OPTIMASI JARINGAN WIRELESS LAN (STUDI KASUS DI KAMPUS ITHB BANDUNG)
DOI:
https://doi.org/10.61769/telematika.v6i1.39Keywords:
Wi-Fi, propagasi dalam ruangan, One Slope Model, akses poin, material penetration.Abstract
Kinerja suatu jaringan Wi-Fi, misalnya pada suatu gedung, dapat diketahui dari penerimaan sinyal yang diterima oleh pengguna dari access point (AP) Wi-Fi. Tentunya
penerimaan sinyal yang naik turun atau yang lemah tidak dikehendaki pada koneksi Internet. Apabila penempatan AP di dalam suatu gedung dilakukan secara tepat maka kinerja jaringan Wi-Fi akan lebih optimal. Terdapat beberapa model propagasi dalam ruangan yang dapat dijadikan pedoman dalam penempatan AP, diantaranya adalah One Slope Model. One Slope Model (1SM)[3] adalah cara paling mudah untuk mengukur level
sinyal rata-rata pada suatu bangunan tanpa harus mengetahui layout suatu bangunan secara detail karena hanya bergantung pada jarak antara pemancar dan penerima. Penelitian ini dilakukan untuk menganalisis kinerja jaringan Wi-Fi dengan mengambil kasus di gedung sebuah institusi pendidikan. Penelitian dilakukan dengan mengukur penerimaan sinyal yang dilakukan langsung di beberapa titik di dalam gedung kampus
dan dihitung secara teoritis menggunakan One Slope Model. Lalu hasilnya disimulasikan dengan perangkat lunak propagasi radio agar secara visual dapat melihat propagasi sinyal Wi-Fi jaringan existing yang selanjutnya dapat digunakan untuk mencari penempatan AP yang tepat sesuai dengan situasi dan kondisi gedung kampus agar kinerja Wi-Fi dapat dioptimalkan.
Performance of a Wi-Fi network, for example in a building, it could be seen from the reception signal received by the user of the access point (AP) Wi-Fi. Surely, fluctuating and weak signal is undesirable in the Internet connection. If APs are placed correctly within a building then the performance of Wi-Fi network would be optimized. There are several indoor propagation models
that could be used as guidelines in the placement of APs, including the One Slope Model. One Slope Model (1SM) [3] is the easiest way to measure the level of the average signal in a building without having to know the layout of a building in detail because it only depends on the distance between the transmitter and receiver. This research was conducted to analyze the performance of Wi-Fi network by taking the case in building of an educational institution. Research carried out by measuring the signal reception at some points in the campus area and theoretically calculated
using the One Slope Model. These results will be simulated by using the radio propagation software which can visually show the propagation of existing Wi-Fi network signals. Then it could be used to search for APs placement appropriate to the situation and condition of campus building structure so that Wi-Fi performance can be optimized.
References
A.B., Yahya. (1998, Juni). Local Area Network Tanpa Kabel. Dipetik
, 2009, dari Elektro Indonesia:
http://www.elektroindonesia.com/elektro/komp13.html.
Anritsu. (2008). Must Have Reference for Wireless Communication.
Anritsu Corporation.
Damosso, E. (2008). Digital Mobile Radio Toward Future Generation
System. COST Telecom.
Dohler, M. (1999). An Outdoor-Indoor Interface Model for Radio
Wave Propagation for 2.4, 5.2, and 60 GHz. London: King's College
London, University of London.
Empirical Propagation Model. (t.thn.). Dipetik 12 8, 2009, dari
http://www.awecommunications.com/Propagation/Indoor/Empirical/in
dex.htm.
Geier, J. (2009). Tutorials. Dipetik 12 9, 2009, dari Wireles Nets, Ltd:
com/resources/tutorials/define_SNR_values.html.html
Geier, J. (2002). Wireless LANs, Second Edition. Indianapolis: Sams.
Geier, J. (2006). Wireless Networks First-Step. Yogya: Andi Publisher.
Hewlett Packard. (2006, June 6). HP Product Bulletin. QuickSpecs
Intel PRO/Wireless 3945ABG (802.11a/b/g) Card.
Jurusan Teknik Elektro, STT Telkom. (2006). Large Scale Fading,
Sistem Komunikasi Bergerak. Modul 3 Propagasi . Sekolah Tinggi
Teknologi Telkom.
Lindroos, S. (2009). Wireless Local Area Network in Residential
Building. Departemen of Radioscience and Engineering, Helsinsky
University of Technology.
Perahia, E., & Stacey, R. (2008). Next Generation Wireless LANs
Throughput, Robustness and Reliability in 802.11n. New York:
Cambridge University Press.
Seybold, J. S. (1958). Introduction to RF Propagation. Canada: Willey
Interscience.
ZVANOVEC, S., PECHAC, P., & KLEPAL, M. (2003). Wireless
Network Design : Site Survey or Propagation Modeling. Praha, Czech
Republic: Dept. of Electromagnetic Field, Czech Technical University.
Downloads
Published
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.