Pengenalan Masker Wajah Menggunakan VGG-16 dan Multilayer Perceptron
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
C. K. Poetra, S. F. Pane, dan R. N. S. Fatonah, “Meningkatkan akurasi long-short term memory (LSTM) pada analisis sentimen vaksin Covid-19 di Twitter dengan Glove,” J. Telemat., vol. 16, no. 2, hlm. 85–90, 2021.
L. Martinelli, dkk., “Face masks during the Covid-19 pandemic: a simple protection tool with many meanings,” Front. Public Heal., vol. 8, Januari, hlm. 1-12, 2021.
F. Amer, M. Ali, dan M. S. H. Al-Tamimi, “Face mask detection methods and techniques: a review,” Int. J. Nonlinear Anal. Appl, vol. 13, Februari, hlm. 2008–6822, 2022.
G. NaliniPriya, M. Shobana, C. Siva, B. Kanisha, J. K. Monica, dan V. Siva Vadivu Ragavi, “Dynamic face mask detection using machine learning,” dalam 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN), Juni, 2022, hlm. 1-5.
M. F. Naufal dan S. F. Kusuma, “Pendeteksi citra masker wajah menggunakan CNN dan transfer learning,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 6, hlm. 1293, 2021.
P. R. Togatorop dan A. Fauzi, “Classification of face mask usage using Squeezenet,” Jatisi (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 1, hlm. 397–406, 2022.
R. Rismiyati dan A. Luthfiarta, “VGG-16 transfer learning architecture for salak fruit quality classification,” Telematika, vol. 18, no. 1, hlm. 37, 2021.
S. Tammina, “Transfer learning using VGG-16 with deep convolutional neural network for classifying images,” Int. J. Sci. Res. Publ., vol. 9, no. 10, hlm. 143-150, 2019.
M. Kurniawan, M. Hakimah, dan S. Agustini, “Perbandingan SVM dan perceptron dengan optimasi heuristik,” J. Telemat., vol. 15, no. 2, hlm. 85–92, 2020.
M. Handayani, M. Riandini, dan Z. Zakarias, “Comparison of neural network optimization functions in candidate husband eligibility classification,” J. Inform., vol. 9, no. 1, hlm. 78–84, 2022.
D. Pardede, B. H. Hayadi, dan Iskandar, “Multilayer perceptron literature review how well this algorithm performs,” J. ICT Apl. Syst., vol. 1, no. 1, hlm. 23–35, 2022.
E. Pirdia Wanti, “Pengidentifikasian citra ikan berformalin dengan menggunakan metode multilayer perceptron,” J. Sains Komput. Inform., vol. 5, no. 1, hlm. 491–502, 2021.
S. Shadkani, A. Abbaspour, S. Samadianfard, S. Hashemi, A. Mosavi, dan S. S. Band, “Comparative study of multilayer perceptron-stochastic gradient descent and gradient boosted trees for predicting daily suspended sediment load: the case study of the Mississippi River, U.S.,” Int. J. Sediment Res., vol. 36, no. 4, hlm. 512–523, 2021.
M. A. Firmansyah, K. N. Ramadhani, dan A. Arifianto, “Pengenalan angka tulisan tangan menggunakan diagonal feature extraction dan klasifikasi artificial neural network multilayer perceptron,” Indones. J. Comput., vol. 3, no. 1, hlm. 65–74, 2018.
J. Pardede, B. Sitohang, S. Akbar, dan M. L. Khodra, “Implementation of transfer learning using VGG-16 on fruit ripeness detection,” Int. J. Intell. Syst. Appl., vol. 13, no. 2, hlm. 52–61, 2021.
J. N. Mogan, C. P. Lee, K. M. Lim, dan K. S. Muthu, “VGG-16 - MLP: Gait recognition with fine-tuned VGG-16 and multilayer perceptron,” Appl. Sci., vol. 12, no. 15, hlm. 1–12, 2022.
Y. Gultom, A. M. Arymurthy, dan R. J. Masikome, “Batik classification using deep convolutional network transfer learning,” J. Ilmu Komput. dan Inf., vol. 11, no. 2, hlm. 189-194, 2018.
O. Gurav, “Face mask detection dataset,” 2020. [Daring]. Tersedia: https://www.kaggle.com/datasets/omkargurav/face-mask-dataset.
K. L. Kohsasih, M. Dipo, A. Rizky, T. Fahriyani, V. Wijaya, dan R. Rosnelly, “Analisis perbandingan algoritme convolutional neural network dan algoritme multilayer perceptron neural dalam klasifikasi citra sampah,” J. Times, vol. 10, no. 2, hlm. 22–28, 2022.
D. Irfan, R. Rosnelly, M. Wahyuni, J. T. Samudra, dan A. Rangga, “Comparison of SGD, Adadelta, and Adam optimization in hydrangea classification using CNN,” J. Sci. Soc. Res., vol. 5, no. 2, hlm. 244-253, 2022.
J. Kusuma, B. H. Hayadi, dan R. Rosnelly, “Comparison of multilayer perceptron (MLP) and support vector machine (SVM) methods for breast cancer classification,” MIND (Multimedia Artif. Intell. Netw. Database) J., vol. 7, no. 1, hlm. 51–60, 2022.
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Jurnal Telematika

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
____________________________________________
Institut Teknologi Harapan Bangsa
Jl. Dipatiukur no. 80-84 Lt. 2
Bandung 40132
Jurnal Telematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.