Sistem Rekomendasi Mobil Berdasarkan Demographic dan Content-Based Filtering
DOI:
https://doi.org/10.61769/telematika.v9i2.92Keywords:
mobil, sistem rekomendasi, content-based filtering, demographic filteringAbstract
Memilih mobil yang sesuai dengan kebutuhan bukan merupakan suatu hal yang mudah. Banyaknya alternatif pilihan mobil yang tersedia dengan spesifikasi yang beragam menyebabkan calon pembeli sering merasa kebingungan dalam menentukan pilihan. Masing-masing orang pun bisa memiliki parameter dan prioritas yang berbeda dalam memilih mobil, sehingga tipe mobil yang cocok bagi seorang pembeli belum tentu cocok bagi pembeli yang lain. Penelitian ini mengembangkan sebuah sistem rekomendasi untuk membantu proses pemilihan mobil bagi calon pembeli dengan menggabungkan dua buah metode. Metode demographic filtering digunakan untuk memberikan rekomendasi berdasarkan kemiripan profil antar pembeli. Sedangkan metode content-based filtering digunakan untuk memberikan rekomendasi berdasarkan kemiripan antara kriteria mobil yang diinginkan pembeli dengan spesifikasi mobil yang tersedia. Hasil pengujian menunjukkan bahwa content-based filtering memberikan rekomendasi yang lebih baik dibandingkan dengan demographic filtering.
Choosing a car that suits your need is not an easy task. The numbers of alternatives with various spesifications often overwhelm and confuse the costumer when they are trying to buy a car. Each customer possibly has different parameters and priorities in choosing a car, thus a car that fits one person's criteria might not be suitable for others. This study develops a recommendation system that can help the process of choosing a car by combinig two methods. Demographic filtering is used to give recommendation based on the similarity between customer's profiles. Content-based filtering is used to give recommendation based on the similarity between customer's criteria and the specifications of available cars. Based on user evaluation, content-based filtering give better recommendations than demographic filtering.
References
Direktorat Jendral Pajak Republik Indonesia. Pendaftaran NPWP Online. [Online]. Available: http://ereg.pajak.go.id
Meliana, Christianti and Hadiguna, Christian. Aplikasi E-Commerce dengan Sistem Rekomendasi Berbasis Collaborative Filtering pada Toko Komputer Ekaria. Jurnal Informatika, Universitas Kristen Maranatha. 2011.
Ricci, Francesco. Recommender System Handbook. London: Springer. 2011.
Van Meteren, Robin, Van Someren, Maartin, Using Content Based Filtering for Recommendation. [Online], Available: www.ics.forth.gr/~potamias/mlnia/paper_6.pdf.
Downloads
Published
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.