Public Sentiment Toward the Indonesian Capital Relocation Policy on X Using a BiLSTM-CNN Model

Authors

  • Wanda Nugraha Institut Pertanian Bogor
  • Mochamad Tito Julianto Institut Pertanian Bogor
  • Mohamad Khoirun Najib Institut Pertanian Bogor
  • Elis Khatizah Institut Pertanian Bogor

DOI:

https://doi.org/10.61769/telematika.v20i2.796

Keywords:

BiLSTM-CNN, Ibu Kota Nusantara (IKN), public sentiment, sentiment analysis, X social media

Abstract

The development of Indonesia's new capital city, Ibu Kota Nusantara (IKN), is an innovative government policy that has sparked diverse public responses. This study aims to explore sentiment trends on the social media platform X to understand public perceptions of the policy. Additionally, a sentiment classification model combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) was developed and optimized through hyperparameter tuning. Exploratory analysis showed that positive sentiment dominated at 46%, followed by negative at 30% and neutral at 24%. The classification model achieved a test accuracy of 78% and an average accuracy of 81% across 10-fold cross-validation, with a standard deviation of 0.006. The achieved accuracy, together with the low cross-validation standard deviation, indicates that the BiLSTM-CNN model demonstrates stable and reliable performance.

Author Biographies

Wanda Nugraha, Institut Pertanian Bogor

Computational Mathematics Division, School of Data Science, Mathematics, and Informatics

Mochamad Tito Julianto, Institut Pertanian Bogor

Computational Mathematics Division, School of Data Science, Mathematics, and Informatics

Mohamad Khoirun Najib, Institut Pertanian Bogor

Computational Mathematics Division, School of Data Science, Mathematics, and Informatics

Elis Khatizah, Institut Pertanian Bogor

Computational Mathematics Division, School of Data Science, Mathematics, and Informatics

References

G. K. Nathanael, D. Angeliawati, and M. Muhadjir, “The power of social media to influence people in Indonesia: Case study of crazy rich scam and big data of election postponement,” JPPI (Jurnal Penelitian Pendidikan Indonesia), vol. 9, no. 1, Mar. 2023, doi: 10.29210/020221755.

K. S. Pribadi and T.-K. Chan, “New capital city,” in Construction in Indonesia. London, UK: Routledge, 2022, pp. 109–118, doi: 10.1201/9781003149866-7.

M. U. Ikfina, “Indonesia’s national capital relocation policy: An analysis of political support in parliament and the public responses on Twitter,” Journal of Governance and Public Policy, vol. 11, no. 1, pp. 1–13, Feb. 2024, doi: 10.18196/jgpp.v11i1.17760.

Y. Yohanes, S. I. Mayrisa, V. Tiyana, A. P. Indriyanti, P. N. Lestari, and M. N. Fatihah, “Analisis potensi wilayah Provinsi Kalimantan Timur terhadap pembangunan Ibu Kota Nusantara (IKN),” Kultura: Jurnal Ilmu Hukum, Sosial, dan Humaniora, vol. 2, no. 5, pp. 129–134, 2024.

A. Aziz SR, “Pemindahan ibu kota negara perspektif civil society,” Journal of Politics and Policy, vol. 5, no. 2, pp. 104–118, Dec. 2023, doi: 10.21776/ub.jppol.2023.005.02.03.

A. Kharisma and I. Ernawati, “Sentimen analisis opini masyarakat Jakarta pada kinerja pemerintah Jakarta terhadap isu tenggelamnya Jakarta menggunakan algoritma support vector machine,” in Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), 2023, pp. 488–497.

J. Husna and M. D. A. Widirahayu, “Pemodelan topik dan analisis sentimen pada ‘Voices of History: 50 Iconic Speeches’ menggunakan pendekatan natural language processing,” Jurnal Ilmiah Manajemen Informasi dan Komunikasi, vol. 8, no. 1, pp. 15–24, Jul. 2024, doi: 10.56873/jimik.v8i1.330.

S. Das, A. Tariq, T. Santos, S. S. Kantareddy, and I. Banerjee, “Recurrent neural networks (RNNs): Architectures, training tricks, and introduction to influential research,” in Recurrent Neural Networks. Cham, Switzerland: Springer, 2023, pp. 117–138, doi: 10.1007/978-1-0716-3195-9_4.

J. Odii, C. Ofoegbu, C. L. Okpalla, and O. I. Christopher, “Emotion detection using a bidirectional long short-term memory (BiLSTM) neural network,” International Journal of Research and Publication Reviews, 2023. [Online]. Available: www.ijrpr.com

D. Khoirunnisa and E. W. Pamungkas, “Sentiment analysis on Shopee app user feedback: A comparison of LSTM and BiLSTM algorithms,” in 2025 International Conference on Smart Computing, IoT and Machine Learning (SIML), IEEE, Jun. 2025, pp. 1–5, doi: 10.1109/SIML65326.2025.11081164.

A. Glenn, P. LaCasse, and B. Cox, “Emotion classification of Indonesian tweets using bidirectional LSTM,” Neural Computing and Applications, vol. 35, no. 13, pp. 9567–9578, May 2023, doi: 10.1007/s00521-022-08186-1.

R. Pramana, M. Jonathan, H. S. Yani, and R. Sutoyo, “A comparison of BiLSTM, BERT, and ensemble method for emotion recognition on Indonesian product reviews,” Procedia Computer Science, vol. 245, pp. 399–408, 2024, doi: 10.1016/j.procs.2024.10.266.

D. U. Iswavigra, “Sentiment analysis to evaluate public service perception among Surakarta City residents using the BiLSTM model,” Journal of Informatics and Telecommunication Engineering, vol. 9, no. 1, pp. 229–239, 2025, doi: 10.31289/jite.v9i1.15498.

R. W. Pratiwi, S. F. Handayani, D. Dairoh, and D. I. Af’idah, “Sentiment analysis on Twitter reviews data using the bidirectional long short-term memory (BiLSTM),” in AIP Conference Proceedings, 2024, Art. no. 030021, doi: 10.1063/5.0199238.

A. I. Safitri and T. B. Sasongko, “Sentiment analysis of cyberbullying using bidirectional long short-term memory algorithm on Twitter,” Jurnal Teknik Informatika (JUTIF), vol. 5, no. 2, pp. 615–620, Apr. 2024, doi: 10.52436/1.jutif.2024.5.2.1922.

R. A. Ilma, S. Hadi, and A. Helen, “Twitter’s hate speech multi-label classification using bidirectional long short-term memory (BiLSTM) method,” in 2021 International Conference on Artificial Intelligence and Big Data Analytics, IEEE, Oct. 2021, pp. 93–99, doi: 10.1109/ICAIBDA53487.2021.9689767.

I. N. Yulita et al., “Bidirectional long short-term memory for analysis of public opinion sentiment on government policy during the COVID-19 pandemic,” International Journal of Advanced Computer Science and Applications, vol. 14, no. 11, 2023, doi: 10.14569/IJACSA.2023.0141189.

D. R. Alghifari, M. Edi, and L. Firmansyah, “Implementasi bidirectional LSTM untuk analisis sentimen terhadap layanan Grab Indonesia,” Jurnal Manajemen Informatika (JAMIKA), vol. 12, no. 2, pp. 89–99, Sep. 2022, doi: 10.34010/jamika.v12i2.7764.

A. Saputra, R. C. S. Hariyono, and N. M. Saraswati, “Analisis sentimen pengguna aplikasi MyPertamina menggunakan algoritma bidirectional long short-term memory,” Jurnal Eksplora Informatika, vol. 13, no. 2, pp. 156–163, Mar. 2024, doi: 10.30864/eksplora.v13i2.973.

S. Gomathi, K. N. Ram, and N. A. B. Mary, “Triplet encoded sequence-based membrane protein classification using BiLSTM,” Multimedia Tools and Applications, vol. 83, no. 36, pp. 84251–84273, Apr. 2024, doi: 10.1007/s11042-024-19010-4.

E. Khatizah and H.-S. Park, “Country-based COVID-19 DNA sequence classification in relation with international travel policy,” Applied Sciences, vol. 14, no. 5, Art. no. 1916, Feb. 2024, doi: 10.3390/app14051916.

E. Tabane, E. Mnkandla, and Z. Wang, “Harnessing ensemble deep learning for DNA sequence classification: Evaluating CNN, BiLSTM, and GRU architectures,” Preprints, Jul. 2025, doi: 10.20944/preprints202507.0032.v1.

R. Amelia, “Sentiment analysis of government policy in relocating the Republic of Indonesia’s capital city,” Journal of Public Administration and Government, vol. 5, no. 2, Aug. 2023. [Online]. Available: https://jurnal.fisip.untad.ac.id/index.php/JPAG

A. Nugraha and M. U. Siregar, “Application of the Naive Bayes classifier method in the sentiment analysis of Twitter users about the capital city relocation,” 2021.

J. Muliawan and E. Dazki, “Sentiment analysis of Indonesia’s capital city relocation using three algorithms: Naïve Bayes, KNN, and random forest,” Jurnal Teknik Informatika (JUTIF), vol. 4, no. 5, pp. 1227–1236, Oct. 2023, doi: 10.52436/1.jutif.2023.4.5.1436.

Y. R. Dewi, N. W. S. Saraswati, M. O. E. Monny, I. B. G. Sarasvananda, and I. G. Andika, “Sentiment analysis of the relocation of the national capital on social media X,” Sinkron, vol. 9, no. 2, pp. 625–636, Apr. 2025, doi: 10.33395/sinkron.v9i2.14622.

A. W. Andi, C. Slamet, D. S. Maylawati, J. Jumadi, A. R. Atmadja, and M. A. Ramdhani, “Sentiment analysis of state capital relocation of Indonesia using convolutional neural network,” in 2022 IEEE 8th International Conference on Computing, Engineering and Design (ICCED), IEEE, Jul. 2022, pp. 1–6, doi: 10.1109/ICCED56140.2022.10010503.

M. D. Angelo, R. W. Harwenda, I. Budi, A. B. Santoso, and P. K. Putra, “Sentiment analysis and topic modeling of public opinion on Indonesia new capital city development policies,” Journal Eduvest, vol. 5, no. 5, 2025. [Online]. Available: http://eduvest.greenvest.co.id

S. Casola, I. Lauriola, and A. Lavelli, “Pre-trained transformers: An empirical comparison,” Machine Learning with Applications, vol. 9, Art. no. 100334, Sep. 2022, doi: 10.1016/j.mlwa.2022.100334.

V. Kumar, “Spatiotemporal sentiment variation analysis of geotagged COVID-19 tweets from India using a hybrid deep learning model,” Scientific Reports, vol. 12, no. 1, Art. no. 1849, Feb. 2022, doi: 10.1038/s41598-022-05974-6.

A. Yenter and A. Verma, “Deep CNN-LSTM with combined kernels from multiple branches for IMDb review sentiment analysis,” in 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), IEEE, Oct. 2017, pp. 540–546, doi: 10.1109/UEMCON.2017.8249013.

X. Wang, W. Jiang, and Z. Luo, “Combination of convolutional and recurrent neural network for sentiment analysis of short texts,” 2016. [Online]. Available: https://github.com/ultimate010/crnn

J. Wang, L.-C. Yu, K. R. Lai, and X. Zhang, “Dimensional sentiment analysis using a regional CNN-LSTM model,” in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Stroudsburg, PA, USA: Association for Computational Linguistics, 2016, pp. 225–230, doi: 10.18653/v1/P16-2037.

G. Wiedemann, E. Ruppert, R. Jindal, and C. Biemann, “Transfer learning from LDA to BiLSTM-CNN for offensive language detection in Twitter,” 2018.

S. Mallick et al., “Deep hybrid CNN-LSTM framework for advanced social media sentiment analysis in data-driven marketing analytic,” International Journal of Environmental Sciences, pp. 169–180, Aug. 2025, doi: 10.64252/82p5f018.

M. Hutagalung and Nurhasanah, “Media framing in the digital age: A narrative review of sociopolitical and cultural impacts,” Communica: Journal of Communication, vol. 3, no. 3, pp. 164–177, Jul. 2025.

E. Musk, “Temporary limits on data scraping and post reading on X/Twitter,” Jan. 2025. [Online]. Available: https://x.com/elonmusk/status/1675187969420828672.

Downloads

Published

2026-01-03

Issue

Section

Articles