Supervised Classification of Industrial Fan Sound Anomalies Using Neural Networks and Engineered Acoustic Features

Authors

  • Angelina Pramana Thenata Universitas Bunda Mulia
  • Ranny . Universitas Bunda Mulia
  • Bhustomy Hakim Universitas Bunda Mulia
  • Fergie Joanda Kaunang Universitas Bunda Mulia

DOI:

https://doi.org/10.61769/telematika.v20i1.772

Keywords:

industrial fan, anomaly detection, acoustic features, neural network, supervised learning

Abstract

This study uses a supervised learning approach based on neural networks for anomaly detection in industrial fan systems. Using a subset of the FAN data from the MIMII (malfunctioning industrial machine investigation and inspection) dataset with 530 labelled recordings (383 normal and 147 abnormal), this study extracts acoustic features including mel-frequency cepstral coefficients (MFCC), spectral descriptors (centroid, roll off), and temporal measures (zero-crossing rate, autocorrelation). Univariate statistical tests reveal that several MFCC coefficients and time-domain features differ significantly between classes (p < 0.05). A feed-forward neural network model with two hidden layers of 64 units (ReLU activation) and dropout regularisation was trained using stratified cross-validation with 5-fold, resulting in an average F1 score of 89.9%. The use of several threshold values (τ ∈ {0.3–0.7}) confirmed the robustness of the model, as seen in the test data results with the selected threshold value of τ = 0.5, which achieved a precision of 100%, recall = 93.10%, F1 = 96.43%, and accuracy = 98.11% (identical results were obtained at τ = 0.6–0.7; while τ = 0.3 provided higher recall). The model also produced an AUC-ROC value of 0.9978, which is close to ideal and demonstrates excellent cross-threshold discrimination. These findings demonstrate that combining interpretable acoustic features with a compact neural classifier enables accurate non-invasive anomaly detection for Industry 4.0 applications with minimal hardware requirements.

Author Biographies

Angelina Pramana Thenata, Universitas Bunda Mulia

Faculty of Design and Technology

Ranny ., Universitas Bunda Mulia

Faculty of Design and Technology

Bhustomy Hakim, Universitas Bunda Mulia

Faculty of Design and Technology

Fergie Joanda Kaunang, Universitas Bunda Mulia

Faculty of Design and Technology

References

C.-S. A. Gong et al., “Design and implementation of acoustic sensing system for online early fault detection in industrial fans,” J. Sens., vol. 2018, no. 1, p. 4105208, 2018. doi: 10.1155/2018/4105208.

R. Müller, F. Ritz, S. Illium, and C. Linnhoff-Popien, “Acoustic anomaly detection for machine sounds based on image transfer learning,” arXiv preprint arXiv:2006.03429, 2020. doi: 10.5220/0010185800490056.

Y. Ota and M. Unoki, “Anomalous sound detection for industrial machines using acoustical features related to timbral metrics,” IEEE Access, vol. 11, pp. 70884–70897, 2023. doi: 10.1109/ACCESS.2023.3294334.

D. C. Sulaiman and T. M. S. Mulyana, “Web-based writing learning application of basic Hanacaraka using convolutional neural network method,” Ultimatics: J. Tek. Inform., vol. 15, no. 1, pp. 28–34, 2023. doi: 10.31937/ti.v15i1.2993.

B. Hakim, F. J. Kaunang, C. Susanto, J. Salim, and R. Indradjaja, “Implementasi machine learning dalam pengelompokan musik menggunakan algoritma K-means clustering,” Idealis: Indones. J. Inf. Syst., vol. 8, no. 1, pp. 74–83, 2025. doi: 10.36080/idealis.v8i1.3357.

L. Y. Teck and A. P. Thenata, “Stock price prediction using TCN-GAN hybrid model,” Sinkron: J. Penelit. Tek. Inform., vol. 9, no. 1, pp. 106–114, 2025. doi: 10.33395/sinkron.v9i1.14246.

M. Fernandes, J. M. Corchado, and G. Marreiros, “Machine learning techniques applied to mechanical fault diagnosis and fault prognosis in the context of real industrial manufacturing use-cases: a systematic literature review,” Appl. Intell., vol. 52, no. 12, pp. 14246–14280, 2022. doi: 10.1007/s10489-022-03344-3.

R. Marino, C. Wisultschew, A. Otero, J. M. Lanza-Gutierrez, J. Portilla, and E. de la Torre, “A machine-learning-based distributed system for fault diagnosis with scalable detection quality in industrial IoT,” IEEE Internet Things J., vol. 8, no. 6, pp. 4339–4352, 2020. doi: 10.1109/JIOT.2020.3026211.

M. K. Gourisaria, R. Agrawal, M. Sahni, and P. K. Singh, “Comparative analysis of audio classification with MFCC and STFT features using machine learning techniques,” Discover Internet Things, vol. 4, no. 1, p. 1, 2024. doi: 10.1007/s43926-023-00049-y.

M. S. Sidhu, N. A. A. Latib, and K. K. Sidhu, “MFCC in audio signal processing for voice disorder: a review,” Multimed. Tools Appl., vol. 84, no. 10, pp. 8015–8035, 2025. doi: 10.1007/s11042-024-19253-1.

S. D. D. Anton, S. Sinha, and H. D. Schotten, “Anomaly-based intrusion detection in industrial data with SVM and random forests,” in Proc. Int. Conf. Softw., Telecommun. Comput. Netw. (SoftCOM), Split, Croatia: IEEE, 2019, pp. 1–6. doi: 10.23919/SOFTCOM.2019.8903672.

M. Aly and M. H. Behiry, “Enhancing anomaly detection in IoT-driven factories using logistic boosting, random forest, and SVM: A comparative machine learning approach,” Sci. Rep., vol. 15, no. 1, p. 23694, 2025. doi: 10.1038/s41598-025-08436-x.

S.-M. Kim and Y. S. Kim, “Enhancing sound-based anomaly detection using deep denoising autoencoder,” IEEE Access, vol. 12, pp. 84323–84332, 2024. doi: 10.1109/ACCESS.2024.3414435.

L. Ruff et al., “Deep semi-supervised anomaly detection,” arXiv preprint arXiv:1906.02694, 2019.

P. Chennai Viswanathan et al., “Deep learning for enhanced fault diagnosis of monoblock centrifugal pumps: Spectrogram-based analysis,” Machines, vol. 11, no. 9, p. 874, 2023. doi: 10.3390/machines11090874.

N. Dutta, P. Kaliannan, and U. Subramaniam, “Application of machine learning algorithm for anomaly detection for industrial pumps,” in Mach. Learn. Algorithms Ind. Appl., Singapore: Springer, 2020, pp. 237–263. doi: 10.1007/978-3-030-50641-4_14.

D. Cabrera, R. Medina, M. Cerrada, R.-V. Sanchez, E. Estupinan, and C. Li, “Improved Mel frequency cepstral coefficients for compressors and pumps fault diagnosis with deep learning models,” Appl. Sci., vol. 14, no. 5, p. 1710, 2024. doi: 10.3390/app14051710.

L. Ttito Ugarte and F. Bernardini, “An overview on the use of machine learning algorithms for identifying anomalies in industrial valves,” in World Conf. Inf. Syst. Technol., Cham: Springer, 2024, pp. 3–12. doi: 10.1007/978-3-031-60215-3_1.

B. R. Navada, V. Sravani, and S. K. Venkata, “Enhancing industrial valve diagnostics: Comparison of two preprocessing methods on the performance of a stiction detection method using an artificial neural network,” Appl. Syst. Innov., vol. 7, no. 6, p. 104, 2024. doi: 10.3390/asi7060104.

K. J. Folz and H. M. Gomes, “An investigation of machine learning strategies for electric motor anomaly detection using vibration and audio signals,” Eng. Comput. (Swansea), vol. 42, no. 2, pp. 465–487, 2025. doi: 10.1108/EC-03-2024-0206.

E. Yun and M. Jeong, “Acoustic feature extraction and classification techniques for anomaly sound detection in the electronic motor of automotive EPS,” IEEE Access, 2024. doi: 10.1109/ACCESS.2024.3471169.

H. Purohit et al., “MIMII dataset: Sound dataset for malfunctioning industrial machine investigation and inspection,” arXiv preprint arXiv:1909.09347, 2019. doi: 10.33682/m76f-d618.

Downloads

Published

2025-09-18

Issue

Section

Articles