Prediction of Electricity Generation from Sawu Sea Waves Using Bidirectional Long Short-Term Memory (Bi-LSTM)
DOI:
https://doi.org/10.61769/telematika.v20i1.742Keywords:
Bi-LSTM, Sawu sea wave, PLTGL-OWC, renewable energy, prediction, power plantAbstract
Several islands in East Nusa Tenggara Province (NTT) are underdeveloped areas with insufficient electrification. Therefore, renewable energy power plants are needed, namely Oscillating Water Column Technology Ocean Wave Power Plants (PLTGL-OWC). The objective of this study is to determine the performance of the bidirectional long short-term memory (Bi-LSTM) method in predicting the potential power generated from the height, length, and period of the Sawu Sea waves in NTT using PLTGL-OWC. This study utilises Sawu Sea wave data collected every 12 hours over 9 months. Bi-LSTM is used in this study because it can overcome the vanishing Gradient problem by utilising both the forward layer and the backward layer, making it more effective in solving complex issues, such as time series prediction. This study conducted tests on hyperparameter batch size and hidden layer node configurations. The smallest mean absolute percentage error (MAPE) prediction values obtained were 9.1943% for the wave height parameter, 11.3585% for the wave length parameter, and 7.1485% for the wave period parameter. It means that the Bi-LSTM method is suitable for predicting the electrical power generated by the PLTGL-OWC in the Sawu Sea, as the height and period parameters fall within the MAPE < 10% category, and the length parameter falls within the MAPE 10-20% category. The average electrical power generated is 2,639,865.948 watts per day over a 31-day period. The Sawu Sea has the potential to serve as a renewable energy source in the NTT region.
References
M. Widyartono and R. Rahmadian, “OTEC potential of East Nusa Tenggara Province in Indonesia,” IOP Conf. Ser. Mater. Sci. Eng., vol. 336, no. 1, pp. 1–7, 2018, doi: 10.1088/1757-899X/336/1/012005.
Kementerian Energi dan Sumber Daya Mineral, Direktorat Jenderal Ketenagalistrikan, Statistik Ketenagalistrikan Tahun 2020, 34th ed. Jakarta: Sekretariat Direktorat Jenderal Ketenagalistrikan, 2021.
M. T. Sambodo, A. H. Fuady, S. D. Negara, F. W. Handoyo, and E. Mychelisda, Electricity Access and Community Welfare in Indonesia. Jakarta, 2021, doi: 10.1007/978-981-16-3611-0.
J. U. Jasron, D. P. Mangesa, K. Boimau, B. V. Tarigan, E. U. K. Maliwemu, and M. Salombe, “Analisa potensi gelombang laut sebagai sumber energi terbarukan menggunakan perangkat oscillating water column (OWC) di wilayah perairan Laut Timor,” LONTAR J. Tek. Mesin Undana, vol. 9, no. 1, pp. 14–20, 2022, doi: 10.35508/ljtmu.v9i01.7269.
C. Olah, “Understanding LSTM networks,” Colah’s Blog, 2015. [Online]. Available: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Y. L. He, L. Chen, Y. Gao, J. H. Ma, Y. Xu, and Q. X. Zhu, “Novel double-layer bidirectional LSTM network with improved attention mechanism for predicting energy consumption,” ISA Trans., vol. 118, pp. 50–60, 2021.
A. H. Asyhar, A. Z. Foeady, M. Thohir, A. Z. Arifin, D. Z. Haq, and D. C. R. Novitasari, “Implementation of LSTM algorithm for cervical cancer using colposcopy data,” in Proc. Int. Conf. Artif. Intell. Inf. Commun. (ICAIIC), 2020, pp. 485–489, doi: 10.1109/ICAIIC48513.2020.9065068.
M. W. P. Aldi, Jondri, and A. Aditsania, “Analisis dan implementasi long short term memory neural network untuk prediksi harga Bitcoin,” e-Proceeding Eng., vol. 5, no. 2, pp. 3548–3555, 2018.
M. Hammad, M. Shoaib, H. Salahudin, M. A. I. Baig, M. M. Khan, and M. K. Ullah, “Rainfall forecasting in Upper Indus Basin using various artificial intelligence techniques,” Stoch. Environ. Res. Risk Assess., vol. 35, no. 1–2, pp. 1–23, 2021, doi: 0.1007/s00477-021-02013-0.
B. Y. Phiadelvira, D. Z. Haq, D. C. R. Novitasari, and F. Setiawan, “Prediksi besar daya listrik tenaga gelombang laut metode oscillating water column (PLTGL-OWC) di Banyuwangi menggunakan extreme learning machine (ELM),” Unnes J. Math., vol. 11, no. 1, pp. 1–7, 2022, doi: 10.15294/ujm.v11i1.50967.
Y. Huérfano-Maldonado, M. Mora, K. Vilches, R. Hernández-García, R. Gutiérrez, and M. Vera, “A comprehensive review of extreme learning machine on medical imaging,” Neurocomputing, vol. 556, pp. 1–20, 2023, doi: 10.1016/j.neucom.2023.126618.
A. Goudjil, M. K. Smail, and M. Nahas, “An end-to-end approach based on a bidirectional long short-term memory neural network for diagnosing wiring networks using reflectometry,” Sustainability, vol. 17, no. 14, pp. 1–20, 2025, doi: 10.3390/su17146241.
S. P. Safda, M. M. Danial, and A. D. Lestari, “Gelombang laut sebagai energi alternatif pembangkit listrik tenaga gelombang laut di perairan Pantai Utara Kabupaten Sambas Kalimantan Barat,” JeLAST J. Tek. Kelautan, PWK, Sipil, dan Tambang, vol. 11, no. 1, pp. 1–8, 2024.
K. Huang and S. Pu, “CEDAS: A compressed decentralized stochastic gradient method with improved convergence,” IEEE Trans. Automat. Contr., vol. 70, no. 4, pp. 2242–2257, 2024, doi: 10.1109/TAC.2024.3471854.
R. L. Abduljabbar, H. Dia, and P. W. Tsai, “Development and evaluation of bidirectional LSTM freeway traffic forecasting models using simulation data,” Sci. Rep., vol. 11, no. 1, pp. 1–16, 2021, doi: 10.1038/s41598-021-03282-z.
P. Serras, G. Ibarra-Berastegi, J. Sáenz, and A. Ulazia, “Combining random forests and physics-based models to forecast the electricity generated by ocean waves: A case study of the Mutriku wave farm,” Ocean Eng., vol. 189, pp. 1–12, 2019, doi: 10.1016/j.oceaneng.2019.106314.
H. Tyralis and G. Papacharalampous, “Variable selection in time series forecasting using random forests,” Algorithms, vol. 10, no. 4, pp. 1–20, 2017, doi: 10.3390/a10040114.
I. R. Siregar, A. Nugraha, K. A. Notodiputro, Y. Angraini, and L. N. A. Mualifah, “The comparison of long short-term memory and bidirectional long short-term memory for forecasting coal price,” Barekeng, vol. 19, no. 1, pp. 245–258, 2025, doi: 10.30598/barekengvol19iss1pp245-258.
I. P. B. Priadinata, I. G. I. Sudipa, N. P. S. Meinarni, I. M. L. Radhitya, and I. K. D. G. Supartha, “Comparative analysis of LSTM, GRU, and Bi-LSTM deep learning models for time series cryptocurrency price forecasting,” Sink. J. Penelit. Tek. Inform., vol. 9, no. 3, pp. 1024–1035, 2025, doi: 10.33395/sinkron.v9i3.14795.
S. Arrohman and D. A. Himawanto, “Peluang dan tantangan pengembangan teknologi oscilating water column (OWS) di Indonesia,” J. Energi dan Teknol. Manufaktur, vol. 4, no. 1, pp. 37–42, 2021, doi: 10.33795/jetm.v4i01.24.
L. N. N. Afifah and I. T. Safira, “Optimalisasi desain turbin Wells pada sistem osilasi kolom air pembangkit listrik tenaga gelombang laut sebagai upaya meningkatkan potensi supply energi terbarukan pada masyarakat pesisir,” J. Offshore Oil, Prod. Facil. Renew. Energy, vol. 4, no. 2, pp. 26–37, 2020, doi: 10.30588/jo.v4i2.831.
I. W. A. Wijaya, “Pembangkit listrik tenaga gelombang laut menggunakan teknologi oscilating water column di perairan Bali,” Teknol. Elektro, vol. 9, no. 2, pp. 165–174, 2010.
L. Wei, L. Guan, and L. Qu, “Prediction of sea surface temperature in the South China Sea by artificial neural networks,” IEEE Geosci. Remote Sens. Lett., vol. 16, no. 12, pp. 1–5, 2019.
D. D. Pramesti, D. C. R. Novitasari, F. Setiawan, and H. Khaulasari, “Prediction of sea surface current velocity and direction in Bali Strait using long short-term memory (LSTM),” Barekeng J. Ilmu Mat. dan Terap., vol. 16, no. 1, pp. 49–57, 2022, doi: 10.30598/barekengvol16iss2pp451-462.
D. Z. Haq et al., “Long short-term memory algorithm for rainfall prediction based on El-Nino and IOD data,” Procedia Comput. Sci., vol. 179, pp. 829–837, 2021, doi: 10.1016/j.procs.2021.01.071.
I. I. Zulfa, D. C. R. Novitasari, F. Setiawan, A. Fanani, and M. Hafiyusholeh, “Prediction of sea surface current velocity and direction using LSTM,” Indones. J. Electron. Instrum. Syst. (IJEIS), vol. 11, no. 1, pp. 93–100, 2021, doi: 10.1016/j.procs.2021.01.071.
G. Xu, Y. Meng, X. Qiu, Z. Yu, and X. Wu, “Sentiment analysis of comment texts based on BiLSTM,” IEEE Access, vol. 7, pp. 1–11, 2019, doi: 10.1109/ACCESS.2019.2909919.
M. Maimaiti, A. Wumaier, K. Abiderexiti, and T. Yibulayin, “Bidirectional long short-term memory network with a conditional random field layer for Uyghur part-of-speech tagging,” Inf., vol. 8, no. 4, pp. 1–12, 2017, doi: 0.3390/info8040157.
J. Kim and N. Moon, “BiLSTM model based on multivariate time series data in multiple field for forecasting trading area,” J. Ambient Intell. Humaniz. Comput., vol. 11, no. 7, pp. 2805–2814, 2019, doi: 10.1007/s12652-019-01398-9.
S. Prayudani, A. Hizriadi, Y. Y. Lase, Y. Fatmi, and Al-Khowarizmi, “Analysis accuracy of forecasting measurement technique on random k-nearest neighbor (RKNN) using MAPE and MSE,” J. Phys. Conf. Ser., vol. 1361, no. 1, pp. 1–8, 2019, doi: 10.1088/1742-6596/1361/1/012089.
Y. Sun, F. Haghighat, and B. C. M. Fung, “A review of the state-of-the-art in data-driven approaches for building energy prediction,” Energy Build., vol. 221, p. 110022, 2020, doi: 10.1016/j.enbuild.2020.110022.
A. N. Rais, R. Rousyati, I. J. Thira, D. N. Kholifah, N. Purwati, and Y. M. Kristania, “Evaluasi metode forecasting pada data kunjungan wisatawan mancanegara ke Indonesia,” Evolusi J. Sains dan Manaj., vol. 8, no. 2, pp. 104–115, 2020, doi: 10.31294/evolusi.v8i2.8971.
T. Moon, S. Hong, H. Y. Choi, D. H. Jung, S. H. Chang, and J. E. Son, “Interpolation of greenhouse environment data using multilayer perceptron,” Comput. Electron. Agric., vol. 166, pp. 1–8, 2019, doi: 10.1016/j.compag.2019.105023
D. I. Puteri, “Implementasi long short term memory (LSTM) dan bidirectional long short term memory (BiLSTM) dalam prediksi harga saham syariah,” Euler J. Ilm. Mat. Sains dan Teknol., vol. 11, no. 1, pp. 35–43, 2023, doi: 10.34312/euler.v11i1.19791.
A. Giusti, A. W. Widodo, and S. Adinugroho, “Prediksi penjualan mi menggunakan metode extreme learning machine (ELM) di Kober Mie Setan cabang Soekarno Hatta,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 8, pp. 2972–2978, 2018.
J. Reynaldo, P. P. Adikara, and R. C. Wihandika, “Analisis sentimen mengenai produk Toyota Avanza menggunakan metode learning vector quantization versi 3 (LVQ 3) dengan seleksi fitur Chi Square, lexicon-based features serta normalisasi min-max,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 3, pp. 830–839, 2020.
Musfiroh, D. C. R. Novitasari, P. K. Intan, and G. G. Wisnawa, “Penerapan metode principal component analysis (PCA) dan long short-term memory (LSTM) dalam memprediksi curah hujan harian,” Build. Informatics, Technol. Sci., vol. 5, no. 1, pp. 1–11, 2023, doi: 10.47065/bits.v5i1.3114.
J. Leites, V. Cerqueira, and C. Soares, “Lag selection for univariate time series forecasting using deep learning: An empirical study,” arXiv preprint arXiv:2405.11237, 2024, doi: 10.1007/978-3-031-73503-5_26.
H. Siqueira et al., “Selection of temporal lags for predicting riverflow series from hydroelectric plants using variable selection methods,” Energies, vol. 13, no. 6, pp. 1–20, 2020, doi: 10.3390/en13164236.
M. Gauch, F. Kratzert, D. Klotz, G. Nearing, J. Lin, and S. Hochreiter, “Rainfall-runoff prediction at multiple timescales with a single long short-term memory network,” Hydrol. Earth Syst. Sci., vol. 25, no. 4, pp. 2045–2062, 2021, doi: 10.5194/hess-25-2045-2021.
Y. Xiao, H. Yin, Y. Zhang, H. Qi, Y. Zhang, and Z. Liu, “A dual-stage attention-based Conv-LSTM network for spatio-temporal correlation and multivariate time series prediction,” Int. J. Intell. Syst., vol. 36, no. 5, pp. 2036–2057, 2021, doi: 10.1002/int.22370.
D. Tomar, P. Tomar, A. Bhardwaj, and G. R. Sinha, “Deep learning neural network prediction system enhanced with best window size in sliding window algorithm for predicting domestic power consumption in a residential building,” Comput. Intell. Neurosci., 2022, doi: 10.1155/2022/7216959.
Y. Syukriyah and A. Purnama, “Modelling time series data for stock prices prediction using bidirectional long short-term memory,” Knowbase Int. J. Knowl. Database, vol. 4, no. 2, pp. 115–129, 2024.
E. Seidi, F. Kaviari, and S. F. Miller, “Hyperparameter tuning of artificial neural network-based machine learning to optimize number of hidden layers and neurons in metal forming,” J. Manuf. Mater. Process., vol. 9, no. 8, p. 260, 2025, doi: 10.3390/jmmp9080260.
A. Q. Khan, H. A. Awan, M. Rasul, Z. A. Siddiqi, and A. Pimanmas, “Optimized artificial neural network model for accurate prediction of compressive strength of normal and high strength concrete,” Clean. Mater., vol. 10, p. 100211, 2023, doi: 10.1016/j.clema.2023.100211.
A. M. Rather, “LSTM-based deep learning model for stock prediction and predictive optimization model,” EURO J. Decis. Process., vol. 9, p. 100001, 2021, doi: 0.1016/j.ejdp.2021.100001.
T. I. Z. M. Putra, Suprapto, and A. F. Bukhori, “Model klasifikasi berbasis multiclass classification dengan kombinasi Indobert embedding dan long short-term memory untuk tweet berbahasa Indonesia,” J. Ilmu Siber dan Teknol. Digit., vol. 1, no. 1, pp. 1–28, 2022, doi: 10.35912/jisted.v1i1.1509.
D. Masters and C. Luschi, “Revisiting small batch training for deep neural networks,” arXiv preprint arXiv:1804.07612, 2018.
J. S. Hwang, S. S. Lee, J. W. Gil, and C. K. Lee, “Determination of optimal batch size of deep learning models with time series data,” Sustainability, vol. 16, no. 14, pp. 1–11, 2024, doi: 10.3390/su16145936.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Icha Dwi Safira, Dian Candra Rini Novitasari, Nurissaidah Ulinnuha, Fajar Setiawan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.