Pencarian Citra Digital Berbasiskan Konten dengan Ekstraksi Fitur HSV, ACD, dan GLCM
DOI:
https://doi.org/10.61769/telematika.v8i2.73Keywords:
Pencarian citra berbasiskan konten, Warna, Tekstur, HSV, ACD, GLCMAbstract
Pencarian citra berbasiskan konten adalah teknik untuk mencari citra yang piksel-pikselnya memiliki karakteristik sama atau mendekati dengan sebuah sekumpulan citra. Penelitian ini menggunakan warna dan tekstur sebagai ekstraksi fitur dari sebuah citra. Untuk warna digunakan dua bentuk pendekatan, yaitu HSV (Hue, Saturation, Value) dan ACD (Average Color Dominance). Sedangkan tekstur menggunakan metode Gray Level Co-occurrence Matrices. Kemudian untuk proses pencocokan antara citra query dengan citra target yang ada pada sekumpulan citra dilakukan perhitungan jarak (Euclidean Distance) dari citra query dengan citra target pada basis data citra. Dari hasil pengujian didapatkan bahwa pencarian citra melalui ekstraksi warna (HSV, ACD) dan tekstur (GLCM) menghasilkan hasil pencarian yang lebih akurat dibanding dengan hanya ekstraksi warna saja atau ekstraksi tekstur saja. Selain itu, citra yang mengandung Point of Interest (POI) tunggal jelas lebih baik dalam pencarian dibandingkan dengan citra yang memiliki banyak POI.
Content-based image retrieval is a technique to search for a set of images based on its pixels that have the same characteristics with query image. This research used color and texture as feature extraction of an image. For color, we use two approaches, namely the HSV (Hue, Saturatuin, Value) and ACD (Average Color Dominance), while for the texture, we use the Gray Level Coocurenes Matrices method. The matching process between the query image with the target image is done by calculating the distance by using Euclidean Distance. The experimental results showed that the extraction of image retrieval through color (HSV, ACD) and texture (GLCM) produces more accurate results compared with extraction using color or texture only. In addition, images that have a single and clear Point of Interest (POI) have better result than the image that has a lot of POI.
References
Ch, Dr B Kavitha, Prabhakara Rao, and A. Govardha. "Image retrieval based on color and texture features of the image sub-blocks." International Journal of Computer Applications, vol. 15, no. 7, 2011.
Fritz Albregtsen. "Statistical Texture Measures Computed from Gray Level Coocurrence Matrices." Image Processing Laboratory, Department of Informatics, University of Oslo, 1995.
Henning Müller, Nicolas Michoux, Davidand Bandon, and Antoine Geissbuhler. "A review of content-based image retrieval systems in medical applications - clinical benefits and future directions." International Journal of Medical Informatics, vol. 73, no. 1, pp. 1 -23, 2004.
Mryka Hall-Beyer. (2007) The GLCM Tutorial Home Page. [Online]. http://www.fp.ucalgary.ca/mhallbey/tutorial.htm.
Downloads
Published
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.