Artificial Neural Network Algorithm on e-Nose Devices for Honey Classification
DOI:
https://doi.org/10.61769/telematika.v20i1.722Keywords:
electronic nose, gas sensor, artificial neural network, multilayer perceptron, honey classificationAbstract
Determining the type of honey is an essential step in maintaining the authenticity and quality of the product. This study developed an electronic nose system based on MQ-3 and MQ-135 gas sensors that record three main volatile parameters, namely carbon dioxide, acetone, and alcohol. A total of 541 data samples were normalised using the min–max method, then divided using a 75 per cent hold-out scheme for training and 25 per cent for testing. The classification model used a multilayer perceptron artificial neural network with a 3–7–3 architecture, Adam optimiser, learning rate of 0.001, batch size of 32, and 1000 epochs. Testing results on 135 test samples showed an overall accuracy of 88.89%. The evaluation per class shows that forest honey achieved 100% precision, 100% recall, and an F1-score of 100, cultivated honey achieved 97.1% precision, 70.8% recall, and an F1-score of 82.1, while trigona honey achieved 75.0% precision, 97.7% recall, and an F1-score of 84.8. These findings indicate that the combination of e-nose and JST is capable of identifying honey with a high level of accuracy, while also opening up opportunities for the application of this method as a rapid detection system to support the authenticity of honey products.
References
T. Eteraf-Oskouei and M. Najafi, "Traditional and modern uses of natural honey in human diseases: A review," Iran. J. Basic Med. Sci., vol. 16, no. 6, pp. 731–742, 2013.
Badan Standardisasi Nasional, Rancangan Standar Nasional Indonesia (RSNI) untuk Madu, draft rev., 2024.
F. Amelya and A. Sudaryanto, "Hubungan tingkat pengetahuan umum dengan pencegahan luka diabetik pada penderita diabetes melitus," J. Ilm. Kesehat. Rustida, vol. 11, no. 1, pp. 56–64, 2024, doi: 10.55500/jikr.v11i1.219.
D. Koesno, "Perbedaan madu asli dan palsu: dari aroma hingga rasa," tirto.id. [Online]. Available: https://tirto.id. [Accessed: Sep. 14, 2025].
A. Sitompul, B. H. Iswanto, and W. Indrasari, "Analisis cluster bahan herbal berdasarkan fitur respon e-nose," Prosiding Seminar Nasional Fisika (E-Journal), vol. IX, no. CX, pp. 141–146, 2020, doi: 10.21009/03.snf2020.01.fa.22.
Z. Hasanati and D. Meidelfi, "Kajian implementasi jaringan syaraf tiruan metode backpropagation untuk deteksi bau," J. Appl. Comput. Sci. Technol., vol. 1, no. 2, pp. 90–95, Dec. 2020, doi: 10.52158/jacost.v1i2.113.
W. B. Gonçalves et al., "Application of an electronic nose as a new technology for rapid detection of adulteration in honey," Appl. Sci., vol. 13, no. 8, 2023, doi: 10.3390/app13084881.
S. Faal, M. Loghavi, and S. Kamgar, "Physicochemical properties of Iranian ziziphus honey and emerging approaches for predicting them using electronic nose," Food Biosci., vol. 148, pp. 1–10, 2019, doi: 10.1016/j.measurement.2019.106936.
M. Barata, E. Noersasongko, P. Purwanto, and M. Soeleman, "Improving the accuracy of C4.5 algorithm with Chi-Square method on pure tea classification using electronic nose," J. RESTI (Rekayasa Sist. dan Teknol. Inf.), vol. 7, no. 2, pp. 226–235, Mar. 2023, doi: 10.29207/resti.v7i2.4687.
D. D. Novita, A. B. Sesunan, M. Telaumbanua, S. Triyono, and T. W. Saputra, "Identifikasi jenis kopi menggunakan sensor e-nose dengan metode pembelajaran jaringan syaraf tiruan backpropagation," J. Ilm. Rekayasa Pertan. dan Biosist., vol. 9, no. 2, pp. 205–217, 2021, doi: 10.29303/jrpb.v9i2.241.
M. Habib, J. Alhamdani, D. Syauqy, and B. H. Prasetio, "Sistem klasifikasi kualitas jenis-jenis madu berdasarkan warna, kecerahan, dan pH menggunakan metode JST backpropagation," J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 6, pp. 2548–2964, 2022.
N. A. Nugroho, D. Syauqy, and F. Utaminingrum, "Rancang bangun sistem klasifikasi kelayakan madu berdasarkan kadar gula dan warna untuk penderita diabetes mellitus menggunakan metode," J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 5, 2023.
Ardiansyah, D. Syauqy, and Tibyani, "Implementasi metode klasifikasi Bayes untuk penentuan keaslian madu lebah berbasis embedded system," J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 2, pp. 1693–1700, 2019.
D. Suhandy, M. Yulia, and K. Kusumiyati, "Klasifikasi madu berdasarkan jenis lebah (Apis dorsata versus Apis mellifera) menggunakan spektroskopi ultraviolet dan kemometrika," J. Ilmu Pertan. Indones., vol. 25, no. 4, pp. 564–573, 2020, doi: 10.18343/jipi.25.4.564.
R. Alfita, H. Rofiq, and M. Ulum, "Rancang bangun alat pendeteksi kualitas madu asli dan campuran dengan menggunakan metode fuzzy," SinarFe7, vol. 2, no. 1, pp. 256–259, 2019.
A. Balivo, S. Cipolletta, R. Tudisco, P. Iommelli, R. Sacchi, and A. Genovese, "Electronic nose analysis to detect milk obtained from pasture-raised goats," Appl. Sci., vol. 13, no. 2, 2023, doi: 10.3390/app13020861.
F. Tangguh and S. Rahma, "Analisis performa metode Naïve Bayes classifier pada electronic nose dalam identifikasi formalin pada tahu," J. Teknol. Inf. dan Komput., vol. 4, no. 1, pp. 1–16, 2023, doi: 10.56705/ijodas.v4i1.67.
R. Khasanah, S. Parman, S. Widodo, and A. Suedy, "Kualitas madu lokal dari lima wilayah di Kabupaten Wonosobo," J. Biol., vol. 6, no. 1, pp. 29–37, 2017.
E. Evahelda, F. Pratama, and B. Santoso, "Sifat fisik dan kimia madu dari nektar pohon karet di Kabupaten Bangka Tengah, Indonesia," Agritech, vol. 37, no. 4, pp. 363–370, 2018, doi: 10.22146/agritech.16424.
N. Agustina, "Manfaat madu bagi kesehatan," Kementerian Kesehatan Republik Indonesia. [Online]. Available: https://yankes.kemkes.go.id/view_artikel/424/manfaat-madu-bagi-kesehatan. [Accessed: Sep. 14, 2025].
Standar Nasional Indonesia, Madu. Jakarta: Badan Standardisasi Nasional, 2018.
F. Rosenblatt, "The perceptron: A probabilistic model for information storage and organization in the brain," Proc. IEEE, vol. 69, no. 3, pp. 386–408, 1969, doi: 10.1109/T-C.1969.222718.
Suryanto, Data Mining untuk Klasifikasi dan Klasterisasi Data. Bandung: Informatika, 2019.
S. Bhattacharyya, "Neural networks: Evolution, topologies, learning algorithms and applications," in Handbook of Natural Computing. Springer, 2011, pp. 450–498, doi: 10.4018/978-1-61350-429-1.ch024.
S. Sinsomboonthong, "Performance comparison of new adjusted min-max with decimal scaling and statistical column normalization methods for artificial neural network classification," Int. J. Math. Math. Sci., 2022, doi: 10.1155/2022/3584406.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ahmad DwSyafi’i, Mula Agung Barata, Roihatur Rohmah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.