Implementation of Long Short-Term Memory Algorithm for Stock Price Prediction of BBCA and BBRI

Authors

  • Nur Zuzzaifa Universitas Teknologi Yogyakarta
  • Sulistyo Dwi Sancoko Universitas Teknologi Yogyakarta

DOI:

https://doi.org/10.61769/telematika.v19i2.701

Keywords:

BBCA, BBRI, Long Short-Term Memory (LSTM), predictions, stock

Abstract

Investing in equity instruments carries a high level of risk because stock movements in the market are difficult to predict. Historical data analysis can be a solution for investors in forecasting future stock price movements. In addition to increasing awareness of the importance of investment, technology also helps in decision-making. This research uses the Long Short-Term Memory (LSTM) algorithm to predict stock prices. The data is taken from the Yahoo Finance website; the variables used are only stock closing data. The stages include literature study, data collection, data sharing, data preprocessing, model building, denormalization, and evaluation. The most optimal results were obtained from the model built on PT Bank Rakyat Indonesia, Tbk. (BBRI) with a training data RMSE value of 37.037 and a testing data RMSE of 80.128. Meanwhile, testing using the LSTM algorithm on PT Bank Central Asia, Tbk (BBCA) obtained a training data RMSE value of 36.905 and a testing data RMSE of 99.9. Furthermore, the best model is used to predict PT BCA and PT BRI stock prices in the next month.

Author Biographies

Nur Zuzzaifa, Universitas Teknologi Yogyakarta

Data Science Study Program

Sulistyo Dwi Sancoko, Universitas Teknologi Yogyakarta

Data Science Study Program

References

D. Dinanti, “Analisis perbandingan metode double moving average dengan double exponential smoothing pada peramalan harga saham perbankan,” Farabi: Jurnal Matematika dan Pendidikan Matematika, vol. 6, no. 1, hlm. 105–112, 2023.

R. Julian dan M. R. Pribadi, “Peramalan harga saham pertambangan pada Bursa Efek Indonesia (BEI) menggunakan long short-term memory (LSTM),” Jatisi (Jurnal Teknik Informatika dan Sistem Informasi), vol. 8, no. 3, hlm. 1570–1580, 2021. DOI: 10.35957/jatisi.v8i3.1159.

L. Wiranda dan M. Sadikin, “Penerapan long short-term memory pada data time series untuk memprediksi penjualan produk PT Metiska Farma,” Jurnal Nasional Pendidikan Teknik Informatika (Janapati), vol. 8, no. 3, hlm. 184–196, 2019.

M. N. Wathani, K. Kusrini, dan K. Kusnawi, “Prediksi tren pergerakan harga saham PT Bank Central Asia, Tbk. dengan menggunakan algoritme long shot term memory (LSTM),” Infotek: Jurnal Informatika dan Teknologi, vol. 6, no. 2, hlm. 502–512, 2023. DOI: 10.29408/jit.v6i2.19824.

B. A. Aprian, Y. Azhar, dan V. R. Setya Nastiti, “Prediksi pendapatan kargo menggunakan arsitektur long short term memory,” Jurnal Komputer Terapan, vol. 6, no. 2, hlm. 148–157, 2020. DOI: 10.35143/jkt.v6i2.3621.

P. Aji Riyantoko, T. Maulana Fahruddin, K. Maulida Hindrayani, dan E. Maya Safitri, “Analisis prediksi harga saham sektor perbankan menggunakan algoritme long short-terms memory (LSTM),” Seminar Nasional Informatika (Semnasif), vol. 1, no. 1, 2020, hlm. 427–435. [Daring]. Tersedia: http://www.jurnal.upnyk.ac.id/index.php/semnasif/article/view/4135

G. Budiprasetyo, M. Hani’ah, dan D. Z. Aflah, “Prediksi harga saham syariah menggunakan algoritme long short-term memory (LSTM),” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 8, no. 3, hlm. 164–172, 2023. DOI: 10.25077/teknosi.v8i3.2022.164-172.

Y. Setiawan, T. Tarno, dan P. Kartikasari, “Prediksi harga jual kakao dengan metode long short-term memory menggunakan metode optimasi root mean square propagation dan adaptive moment estimation dilengkapi GUI Rshiny,” Jurnal Gaussian, vol. 11, no. 1, hlm. 99–107, 2022. DOI: 10.14710/j.gauss.v11i1.33994.

A. S. B. Karno, “Prediksi data time series saham Bank BRI dengan mesin belajar LSTM (long short-term memory),” Journal of Informatic and Information Security, vol. 1, no. 1, hlm. 1–8, 2020. DOI: 10.31599/jiforty.v1i1.133.

D. I. Puteri, “Implementasi long short-term memory (LSTM) dan bidirectional long short-term memory (BiLSTM) dalam prediksi harga saham syariah,” Euler: Jurnal Ilmiah Matematika, Sains dan Teknologi, vol. 11, no. 1, hlm. 35–43, 2023. DOI: 10.34312/euler.v11i1.19791.

T. G. Lasijan, R. Santoso, dan A. R. Hakim, “Prediksi harga emas dunia menggunakan metode long-short term memory,” Jurnal Gaussian, vol. 12, no. 2, hlm. 287–295, 2023. DOI: 10.14710/j.gauss.12.2.287-295.

B. A. H. Kholifatullah dan A. Prihanto, “Penerapan metode long short-term memory untuk klasifikasi pada hate speech,” Journal of Informatics and Computer Science (Jinacs), vol. 04, hlm. 292–297, 2023. DOI: 10.26740/jinacs.v4n03.p292-297.

T. Bastian Sianturi, I. Cholissodin, dan N. Yudistira, “Penerapan algoritme long short-term memory (LSTM) berbasis multifungsi aktivasi terbobot dalam prediksi harga Ethereum,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 3, hlm. 1101–1107, 2023.

Published

2025-05-05

Issue

Section

Articles