Application of You Only Look Once and DeepSORT for Vehicle Number Plate Detection

Authors

  • Firhat Hidayat Institut Teknologi Harapan Bangsa
  • Natanael Billy Institut Teknologi Harapan Bangsa
  • Nicholas Russel Permana Institut Teknologi Harapan Bangsa
  • Matthew Evans Hariady Institut Teknologi Harapan Bangsa

DOI:

https://doi.org/10.61769/telematika.v20i2.676

Keywords:

object detection, license plate detection, convolutional neural network, YOLOv8, DeepSORT

Abstract

Number plate detection is essential in traffic monitoring, law enforcement, and intelligent transport systems. However, existing methods still have difficulty accurately tracking vehicles in heavy traffic conditions. This study addresses this by combining the YOLOv8 detection model and DeepSORT tracking. Using 453 images from Kaggle, this study analyses the effect of batch size variation and an epoch on model performance. The best model achieved 95.5% precision, 95.1% recall, 98.7% mAP50, and 64.5% mAP95. The integration of YOLOv8 and DeepSORT can improve tracking consistency, reduce ID switching errors, and increase the reliability of the automatic number plate recognition system.

Author Biographies

Firhat Hidayat, Institut Teknologi Harapan Bangsa

Informatics Study Program

Natanael Billy, Institut Teknologi Harapan Bangsa

Informatics Study Program

Nicholas Russel Permana, Institut Teknologi Harapan Bangsa

Informatics Study Program

Matthew Evans Hariady, Institut Teknologi Harapan Bangsa

Informatics Study Program

References

Badan Pusat Statistik, ”Jumlah Kendaraan Bermotor Menurut Provinsi dan Jenis Kendaraan (Unit),” 2022. [Daring]. Tersedia:https://www.bps.go.id/id/statistics-table/3/VjJ3NGRGa3dkRk5MTlU1bVNFOTVVbmQyVURSTVFUMDkjMw==/jumlah-kendaraan-bermotor-menurut-provinsi-dan-jenis-kendaraan--unit---2022.html?year=2022. [5 Februari 2025].

L. Satya, M. R. D. Septian, M. W. Sarjono, M. Cahyanti, dan E. R. Swedia, “Sistem pendeteksi plat nomor polisi kendaraan dengan arsitektur YOLOv8,” Jurnal Sebatik, vol. 27, no. 02, Desember 2023.

R. Illmawati dan Hustinawati, “YOLOv5 untuk deteksi nomor kendaraan di DKI Jakarta,” Jurnal Ilmu Komputer Agri Informatika, vol. 10, no. 1, 2023.

P. A. Cahyani, ”Sistem perhitungan kendaraan menggunakan algoritma YOLOv5 dan DeepSORT”, Skripsi, Universitas Lampung, 2023.

A. Ahmedov, “Automatic Number Plate Recognition,” 2022. [Daring]. Tersedia:

Larxel, “Car License Plate Detection,” 2020. [Daring]. Tersedia: https://www.kaggle.com/datasets/andrewmvd/car-plate-detection [5 Maret 2025]

J. Terven dan D. M. Cordova-Esparaza, “A comprehensive review of YOLO: from YOLOv1 to YOLOv8 and Beyond,” April 2023, DOI: 10.48550/arXiv.2304.00501.

R. Pereira, G. Carvalho, L. Garrote, and U. J. Nunes. “SORT and DeepSORT based multi-object tracking for mobile robotics: evaluation with new data association metrics,” MDPI Aplied Science Journal, vol. 12, no. 3, Januari 2022.

N.D, Quang-Anh & Kim, Dinh Thai & Nguyen, Quynh-Chi & Thi, Thu & Vu, Quan & Do, Duc & Nguyen, Van-Ninh, “Optimizing Traffic Light Control using YOLOv8 for Real-Time Vehicle Detection and Traffic Density”. 10.1109/icdv61346.2024.10616901. 2024.

J. Davis dan M. Goadrich, “The relationship between precision-recall and ROC curves,” in Proceedings of the 23rd International Conference on Machine Learning (ICML), Pittsburgh, PA, USA, 2006, pp. 233–240

D. Powers, “Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation,” J. Mach. Learn. Technol., vol. 2, no. 1, pp. 37–63, 2011.

Published

2025-03-06

Issue

Section

Articles