Klasifikasi Image Jenis Kayu pada Furnitur dengan Convolutional Neural Network
DOI:
https://doi.org/10.61769/telematika.v18i2.617Keywords:
wood, classification, Convolutional Neural Network, image classification, confusion matrixAbstract
Different types of wood have unique patterns and colors. A classification process is necessary to identify the type of wood using the Convolutional Neural Network (CNN) method. This method enables feature extraction, which becomes the data used to classify wood species. The wood image data collected from augmentation data consists of 120 images, including teak, mahogany, oak, and pine wood types. The four wood species classes have a 70% training data and a 30% test data ratio. Each class uses four convolutional layers with filters of 32, 32, 64, and 64, and a pool size of 2x2 with 512 neurons in the hidden layer. Testing the image classification website using the confusion matrix method resulted in an accuracy of 80.5%.
References
P. A. Nugroho, I. Fenriana, dan R. Arijanto, “Implementasi deep learning menggunakan convolutional neural network (CNN) pada ekspresi manusia,” Jurnal Algor, vol. 2, no. 1, hlm. 12–21, 2020.
M. R. Efrian dan U. Latifa, “Image recognition berbasis convolutional neural network (CNN) untuk mendeteksi penyakit kulit pada manusia,” Jurnal Polektro: Jurnal Power Elektronik, vol. 11, no. 1, hlm. 276–282, 2022, DOI: 10.30591/polektro.v12i1.3874.
N. F. Mustamin, Y. Sari, dan H. Khatimi, “Klasifikasi kualitas kayu kelapa menggunakan arsitektur CNN,” Kumpulan jurnaL Ilmu Komputer (KLIK), vol. 8, no. 1, hlm. 49–59, 2021, DOI: http://dx.doi.org/10.20527/klik.v8i1.370.
T. Riantiarni, “Deteksi Cacat pada Permukaan Kayu Menggunakan Model Convolutional Neural Network Yolov5,” Skripsi, Telkom University, Bandung, 2022.
S. Ilahiyah dan A. Nilogiri, “Implementasi deep learning pada identifikasi jenis tumbuhan berdasarkan citra daun menggunakan convolutional neural network,” Justindo (Jurnal Sistem & Teknologi Informasi Indonesia), vol. 3, no. 2, hlm . 49–56, 2018.
U. N. Oktaviana, R. Hendrawan, A. D. K. Annas, dan G. W. Wicaksono, “Klasifikasi penyakit padi berdasarkan citra daun menggunakan model terlatih Resnet101,” Jurnal Resti (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, hlm. 1216–1222, 2021, DOI: https://doi.org/10.29207/resti.v5i6.3607.
E. Rasywir, R. Sinaga, dan Y. Pratama, “Analisis dan implementasi diagnosis penyakit sawit dengan metode convolutional neural network (CNN),” Paradigma – Jurnal Informatika dan Komputer, vol. 22, no. 2, hlm. 117–123, 2020, DOI: https://doi.org/10.31294/p.v22i2.8907.
L. H. Ganda dan H. Bunyamin, “Penggunaan augmentasi data pada klasifikasi jenis kanker payudara dengan model Resnet-34,” Jurnal Strategi, vol. 3, no. 1, hlm. 187–193, 2021,
L. Farokhah, “Implementasi convolutional neural network untuk klasifikasi variasi intensitas emosi pada dynamic image sequence,” Jurnal Resti (Rekayasa Sistem dan Teknologi Informasi), vol. 4, no. 6, hlm. 1070–1076, 2020, DOI: https://doi.org/10.29207/resti.v4i6.2644.
S. Fauzi, P. Eosina, dan G. F. Laxmi, “Implementasi convolutional neural network untuk identifikasi ikan air tawar,” dalam Prosiding Seminar Teknologi Informasi (Semnati), vol. 2, 2019, hlm. 163–167.
R. A. Pangestu, B. Rahmat, dan F. T. Anggraeny, “Implementasi algoritme CNN untuk klasifikasi citra lahan dan perhitungan luas,” Jurnal Informatika dan Sistem Informasi (JIFoSI) Vol, vol. 1, no. 1, hlm. 166–174, 2020.
M. S. Maheshan dan B. S. H. N. Nagadarshan, “A convolution neural network engine for sclera recognition,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 1, 2018, DOI:10.9781/ijimai.2019.03.006.
G. Wicaksono, S. Andryana, dan Benrahman, “Aplikasi pendeteksi penyakit pada daun tanaman apel dengan metode convolutional neural network,” Jointecs (Journal of Information Technology and Computer Science), vol. 7, no. 1, hlm. 9–16, 2020, DOI: https://doi.org/10.31328/jointecs.v5i1.1221.
A. Kholik, “Klasifikasi menggunakan convolutional neural network (CNN) pada tangkapan layar halaman Instagram,” Jurnal Data Mining dan Sistem Informasi (JDMSI), vol. 2, no. 2, hlm. 10–20, 2021, DOI: https://doi.org/10.33365/jdmsi.v2i2.1345.
D. Normawati dan S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” Jurnal Sains Komputer & Informatika (J-SAKTI), vol. 5, no. 2, hlm. 697–711, Sep. 2021, DOI: http://dx.doi.org/10.30645/j-sakti.v5i2.369
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Evasaria Magdalena Sipayung, Edward Christopher R.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.