Analisis Sentimen Pengguna X terhadap Chatgpt dengan Algoritme Naive Bayes
DOI:
https://doi.org/10.61769/telematika.v18i2.614Keywords:
X, ChatGPT, Lexicon-based, Naive Bayes, sentiment analysisAbstract
Artificial intelligence has experienced rapid growth in various sectors of modern human life. One example is ChatGPT (chat generative pre-trained transformer), which OpenAI developed. ChatGPT is capable of understanding and generating human-like text. ChatGPT is used to answer questions, create articles, generate code, and scientific journals. However, some concerns are that using ChatGPT in education may not optimally support the development of students' problem-solving and critical-thinking skills. In addition, ChatGPT may also reduce the role of workers in content creation, from writers to programmers. Therefore, analyzing public sentiment towards ChatGPT is important. In this study, sentiment analysis was conducted on users of app X, a social media platform often used to express opinions. Naive Bayes classifier was used as the algorithm to analyze the sentiment of 4,861 data collected, with 2,884 data after preprocessing. The analysis results showed positive (1,543 data), negative (318 data), and neutral (1,023 data) sentiments. The Naive Bayes algorithm provides an accuracy of 87.175043%. This research provides a more in-depth view of the community's response to ChatGPT. Such results are important to support the responsible development of this model by ensuring the validity of the information and avoiding over-reliance. This research provides a foundation for OpenAI to better develop ChatGPT according to the needs and expectations of the community.
References
J. Hsu, “Europe’s AI regulations could lead the way for the world,” New Scientist, Dec 28, 2022. [Daring]. Tersedia: https://www.newscientist.com/article/mg25634192-300-eus-artificial-intelligence-act-will-lead-the-world-on-regulating-ai/
A. T. Norori, Qiyang Hu, Florence Marcelle Aellen, dan Francesca Dalia Faraci, “Addressing bias in big data and AI for health care: A call for open science,” National Library of Medicine, vol. 2, no. 10, 2021, DOI: 10.1016/j.patter.2021.100347
P. Korzynski, G. Mazurek, A. Altmann, J. Ejdys, R. Kazlauskaite, J. Paliszkiewicz, K. Wach, dan E. Ziemba, “Generative artificial intelligence as a new context for management theories: analysis of ChatGPT,” Central European Management Journal, vol. 31, no. 1, 2023, DOI:10.1108/CEMJ-02-2023-0091
D. O. Eke, “ChatGPT and the rise of generative AI: Threat to academic integrity?” Journal of Responsible Technology, vol. 13, 2023.
D. R.-Ziff, “New York City blocks use of the ChatGPT bot in its schools,” Jan 5, 2023. [Daring]. Tersedia: https://www.washingtonpost.com/education/2023/01/05/nyc-schools-ban-chatgpt/
A. Novantirani, M. S. Kania Sabariah, dan V. Effendy, “Analisis sentimen pada Twitter untuk penggunaan transportasi umum darat dalam kota dengan metode support vector machine,” dalam e-Proceeding of Engineering, vol. 2, no.1, April 2015, hlm. 1177.
F. F. Mailoa dan L. Lazuardi, “Analisis sentimen data Twitter menggunakan metode text mining tentang masalah obesitas di Indonesia,” Journal of Information Systems for Public Health (JISPH), vol. 4, no. 1, hlm. 28-36, 2019, DOI: https://doi.org/10.22146/jisph.44455
A. Faesal, A. Muslim, A. H. Ruger, dan K. Kusrini, “Sentimen analisis terhadap komentar konsumen terhadap produk penjualan toko online menggunakan metode k-means,” Matrik: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 19, no. 2, hlm. 207–213, Mei 2020, DOI: 10.30812/matrik.v19i2.640.
F. Solihin, S. Awaliyah, A. Muid, dan A. Shofa, “Pemanfaatan Twitter sebagai media penyebaran informasi oleh Dinas Komunikasi dan Informatika,” Jurnal Pendidikan Ilmu Pengetahuan Sosial (JPIPS), vol. 1, no. 13, hlm. 52–58, 2021.
M. W. Hidayat, “Twitter Bebaskan Akses Arsip Twit untuk Tujuan Penelitian,” [Daring]. Tersedia: https://www.merdeka.com/teknologi/twitter-bebaskan-akses-arsip-twit-untuk-tujuan-penelitian.html
L. Ardiani, H. Sujaini, dan T. Tursina, “Implementasi sentiment analysis tanggapan masyarakat terhadap pembangunan di kota Pontianak,” Jurnal Sistem dan Teknologi Informasi (Justin), vol. 8, no. 2, hlm. 183, Apr. 2020, DOI: 10.26418/justin.v8i2.36776.
A. Wandani, F. Fauziah, dan A. Andrianingsih, “Sentimen Analisis Pengguna Twitter pada Event Flash Sale Menggunakan Algoritma K-NN, Random Forest, dan Naive Bayes,” Jurnal Sains Komputer dan Informatika, vol. 5, no. 2, hlm. 651-665, 2021, DOI: http://dx.doi.org/10.30645/j-sakti.v5i2.365.
W. Vallejo, C. Díaz-Uribe, dan C. Fajardo, “Google colab and virtual simulations: practical e-learning tools to support the teaching of thermodynamics and to introduce coding to students,” ACS Omega, vol. 7, no. 8, hlm. 7421–7429, 2022, DOI: 10.1021/acsomega.2c00362.
A. Upreti, “Hands-on Web Scraping: Building your Twitter dataset with python and scrapy,” Jan 14, 2020. [Daring]. Tersedia: https://towardsdatascience.com/hands-on-web-scraping-building-your-own-twitter-dataset-with-python-and-scrapy-8823fb7d0598 towardsdatascience.com.
V. Singh, G. Singh, P. Rastogi, dan D. Deswal, “Sentiment analysis using lexicon based approach,” dalam 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC), Dec 20-22, 2018, DOI: 10.1109/PDGC.2018.8745971
Ahmad Choirun Najib, Ghiffari Assamar Qandi, Akhmad Irsyad, dan Nur Aini Rakhmawati, “Perbandingan metode Lexicon-based dan SVM untuk analisis sentimen berbasis ontologi pada kampanye pilpres Indonesia tahun 2019 di Twitter,” Fountain of Informatics, vol. 4, no. 2, Nov 2019, DOI: https://doi.org/10.21111/fij.v4i2.3573
C. C. Aggarwal, Data Mining. Switzerland: Springer International Publishing, 2015.
I. Markoulidakis, I. Rallis, I. Georgoulas, G. Kopsiaftis, dan Anastasios Doulamis, “Multiclass confusion matrix reduction method and its application on net promoter score classification problem,” Technologies (Basel), vol. 9, no. 4, Nov 2021.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Bayu Purbayanto, Teguh Nurhadi Suharsono

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.