Penerapan Metode Linear Regression pada Analisis Komentar Negatif Konser Coldplay di Indonesia
DOI:
https://doi.org/10.61769/telematika.v18i1.591Keywords:
linear regression, data mining, binomial, sentiment analysis, Coldplay concertAbstract
Negative comments on international concert events can have a significant impact on the future conduct of such concerts. Possible impacts of negative comments include decreased interest from the audience, difficulty in gaining sponsorship and partner support, influence on decisions made by the artist or musical group, and safety considerations for the organizers, audience, and the artist or group. An analysis of negative comments on an international concert is necessary for an appropriate strategy to manage and mitigate negative impacts that may arise in the future. The benefits of analyzing the impact of negative comments on an international concert are diverse. The analysis can influence various aspects related to the implementation of the event and public perception. 72 negative comments have been classified using the linear regression method. Based on the results of the value of these negative comments, it can be stated that some of the words that trigger a comment to be considered as negative in the context of Coldplay concerts in Indonesia are words such as "rejection," "hadang," "nope," and "tolak." From the analysis conducted in this study, these words appear with significant frequency in the comments classified as negative.
References
K. A. B. Permana, M. Sudarma, dan W. G. Ariastina, “Analisis rating sentimen pada video di media sosial Youtube menggunakan STRUCT-SVM,” Maj. Ilm. Teknol. Elektro, vol. 18, no. 1, hlm. 113–118, 2019, doi: 10.24843/mite.2019.v18i01.
P. S. M. Suryani, L. Linawati, dan K. O. Saputra, “Penggunaan metode Naïve Bayes classifier pada analisis sentimen Facebook berbahasa Indonesia,” Maj. Ilm. Teknol. Elektro, vol. 18, no. 1, hlm. 145–148, 2019, doi: 10.24843/mite.2019.v18i01.
S. Nadia, E. Sulistianingsih, dan N. Imro’ah, “Penentuan harga opsi tipe Eropa dengan metode binomial,” Bimaster Bul. Ilm. Mat. Stat. dan Ter., vol. 7, no. 2, hlm. 127–134, 2018, doi: 10.26418/bbimst.v7i2.24882.
M. Reza Athallah dan A. Fauzan Rozi, “Implementasi data mining untuk prediksi peramalan penjualan produk HJ Karpet menggunakan metode linear regression,” J. J. Sains dan Teknol., vol. 3, no. 1, hlm. 170–177, 2023, doi: 10.47233/jsit.v3i1.550.
Dani, Martanto, dan I. Ali, “Prediksi jumlah mahasiswa baru tahun 2023 menggunakan metode regresi linear pada Universitas Swadaya Gunung Jati Cirebon,” Komputek, vol. 7, no. 1, hlm. 29–41, 2023, doi: 10.24269/jkt.v7i1.1915.
L. A. Silaban dan Susiana, “Analysis of factors influencing the percentage of poverty in North Sumatra using robust linear regression,” Formosa J. Sci. Technol., vol. 2, no. 2, hlm. 493–506, 2023, doi: 10.55927/fjst.v2i2.2857.
S. Bramasto dan D. Khairiani, “Prediksi daya output sistem Pembangkit Listrik Tenaga Surya (PLTS) menggunakan regresi linear berganda,” J. Fakt. Exacta, vol. 15, no. 3, hlm. 139–150, 2022, doi: 10.30998/faktorexacta.v15i2.13254.
N. Rahmayanti, “Analisis Sentimen Berbasis Aspek pada Ulasan Finance Techonology Menggunakan Metode Support Vector Machine,” Universitas Komputer Indonesia, 2022. [Daring]. Tersedia: http://elibrary.unikom.ac.id/id/eprint/7072
Suherman, F. Muammar, dan I. Afriantoro, “Analisis data mining untuk prediksi penyakit kanker paru dengan algoritme regresi linear,” Sigma J. Teknol. Inf., vol. 13, no. 3, hlm. 167–172, 2022.
M. Fudhail Ferio Supeli dan Setiaji, “Klasifikasi sentimen positif dan negatif pada aplikasi vidio dengan algoritme K-Nearest Neighbor,” Indones. J. Comput. Sci., vol. 2, no. 1, hlm. 7–15, 2023, doi: 10.31294/ijcs.v2i1.1874.
M. Rafi Nahjan, N. Heryana, dan A. Voutama, “Implementasi Rapidminer dengan metode clustering k-means untuk analisa penjualan pada Toko Oj Cell,” Jati (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, hlm. 101–104, 2023, doi: 10.36040/jati.v7i1.6094.
I. Setianingsih dan I. Ali, “Klasterisasi pengeluaran kas di Desa Pamengkang menggunakan metode k-means,” Jati (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, hlm. 784–787, 2023, doi: 10.36040/jati.v7i1.6488.
B. Rahmat dkk., “Implemetasi k-means clustering pada Rapidminer untuk analisis daerah rawan kecelakaan,” Semin. Nas. Ris. Kuantitatif Terap. 2017, April, hlm. 58–62, 2017, [Daring]. Tersedia: https://ojs.innov-center.org/index.php/snrkt2017/article/download/10/9
M. H. Al-Areef dan K. Saputra S., “Analisis sentimen pengguna Twitter mengenai calon presiden Indonesia tahun 2024 menggunakan algoritme LSTM,” J. Saintikom (Jurnal Sains Manaj. Inform. dan Komputer), vol. 22, no. 2, hlm. 270–279, 2023, doi: 10.53513/jis.v22i2.8680.
G. B. Subiksa, M. Dinda, P. Pramita, dan K. O. Saputra, “Prediction competition result of Indonesian football club with C.45 algorithm,” vol. 3, no. 1, hlm. 39–44, 2018, doi: 10.24843/IJEET.2017.v02.i01.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Gde Brahupadhya Subiksa, Made Pasek Agus Ariawan, Ida Bagus Adisimakrisna Peling

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.