Algoritma K-Nearest Neighbors (KNN) untuk Klasifikasi Citra Buah Pisang dengan Ekstraksi Ciri Gray Level Co-Occurrence

Authors

  • Rifqi Syahrul Ilhamy Universitas Nahdlatul Ulama Sunan Giri Bojonegoro
  • Ucta Pradema Sanjaya Universitas Nahdlatul Ulama Sunan Giri Bojonegoro

DOI:

https://doi.org/10.61769/telematika.v17i2.525

Keywords:

banana, feature extraction, classification, GLCM, KNN

Abstract

Banana is one type of fruit that is rich in benefits. Bananas have a soft flesh texture. There are various sizes of bananas based on the type. The color and shape of bananas differentiate one type of banana from another. This research recognizes and classifies bananas based on their skin color by using digital image processing. The gray level co-occurrence matrix (GLCM) feature is an extraction technique commonly used to find features in an image. The classification technique in this study uses the k-nearest neighbors (KNN) algorithm. This study obtained the best accuracy of 76.6% at an angle of 0 degrees with a value of k = 1, 90% accuracy at an angle of 45 degrees with a value of k = 1, 86% accuracy at an angle of 90 degrees with a value of k = 1, and 73% accuracy at an angle of 135 degrees with a value of k = 5, 7, 9.

Author Biographies

Rifqi Syahrul Ilhamy, Universitas Nahdlatul Ulama Sunan Giri Bojonegoro

Informatics Engineering Study Program

Ucta Pradema Sanjaya, Universitas Nahdlatul Ulama Sunan Giri Bojonegoro

Informatics Engineering Study Program

References

R. A. Saputra, Suharyanto, S. Wasiyanti, D. F. Saefudin, A. Supriyatna, dan A. Wibowo, “Rice leaf disease image classifications using KNN based on GLCM feature extraction,” J. Phys. Conf. Ser., vol. 1641, no. 1, 2020. DOI:10.1088/1742-6596/1641/1/012080

Muhathir, M. H. Santoso, dan D. A. Larasati, “Wayang image classification using MLP method and GLCM feature extraction,” J. Comput. Sci. Inf. Technol. Telecommun. Eng., vol. 4, no. 2, hlm. 111–120, 2021. DOI: 10.31289/jite.v4i2.4524

I. Siswanto, E. Utami, dan S. Raharjo, “Klasifikasi tingkat kematangan buah berdasarkan warna dan tekstur menggunakan metode k-nearest neighbor dan nearest mena classifier,” Inspir. J. Teknol. Inf. dan Komun., vol. 10, no. 1, hlm. 93, 2020. DOI: http://dx.doi.org/10.35585/inspir.v10i1.2559

D. T. Worung, S. R. U. A. Sompie, dan A. Jacobus, “Implementasi k-means dan KNN pada pengklasifikasian citra bunga,” J. Tek. Inform., vol. 15, no. 3, pp. 217–222, 2020. DOI: https://doi.org/10.35793/jti.15.3.2020.31965

Saifudin dan A. Fadlil, “Sistem identifikasi citra kayu berdasarkan tekstur menggunakan gray level co-occurence matrix (GLCM) dengan klasifikasi jarak euclidean,” Sinergi, vol. 19, no. 3, hlm. 181–186, 2015. DOI: http://dx.doi.org/10.22441/sinergi.2015.3.003

F. Agustina dan Z. A. Ardiansyah, “Identifikasi citra daging ayam kampung dan broiler menggunakan metode GLCM dan klasifikasi-NN,” J. Infokam, vol. XVI, no. 1, hlm. 25–36, 2020. DOI: https://doi.org/10.53845/infokam.v16i1.196

M. Yogeshwari dan G. Thailambal, “Automatic feature extraction and detection of plant leaf disease using GLCM features and convolutional neural networks,” dalam Mater. Today Proc., 2021. DOI: https://doi.org/10.1016/j.matpr.2021.03.70

B. Jabber, K. Rajesh, D. Haritha, C. Z. Basha, dan S. N. Parveen, “An intelligent system for classification of brain tumours with GLCM and back propagation neural network,” dalam Proc. 4th Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2020, hlm. 21–25.

P. N. Andono dan S. H. Nugraini, “Texture feature extraction in grape image classification using k-nearest neighbor,” Resti, vol. 6, no. 5, hlm. 768–775, 2022. DOI: https://doi.org/10.29207/resti.v6i5.4137

J. Han dan M. Kamber, Data Mining: Concepts and Techniques, 3rd Ed., USA: Elsevier, 2012.

C. C. Aggarwal, Data Mining: The Textbook. Springer, 2015.

A. P. Pawlovsky, “An ensemble based on distances for a KNN method for heart disease diagnosis,” dalam Int. Conf. Electron. Inf. Commun. ICEIC 2018, hlm. 1–4. DOI: 10.23919/ELINFOCOM.2018.8330570

M. Faruk dan N. Nafi'iyah, “Klasifikasi kanker kulit berdasarkan fitur tekstur, fitur warna citra menggunakan SVM dan KNN,” Telematika, vol. 13, no. 2, hlm. 100–109, 2020. DOI: http://dx.doi.org/10.35671/telematika.v13i2.987

T. W. Schiller, Y. Chen, I. E. Naqa, dan J. O. Deasy, “Modeling radiation-induced lung injury risk with an ensemble of support vector machines,” Neurocomputing, vol. 73, no. 10–12, hlm. 1861–1867, 2010. DOI: https://doi.org/10.1016/j.neucom.2009.09.023

Y. Ji dan S. Sun, “Multitask multiclass support vector machines : Model and experiments,” Pattern Recognit., vol. 46, no. 3, hlm. 914–924, 2013

D. Gil dan M. Johnsson, “Using support vector machines in diagnoses of urological dysfunctions,” Expert Syst. Appl., vol. 37, no. 6, hlm. 4713–4718, 2010. DOI: https://doi.org/10.1016/j.eswa.2009.12.055

I. Mubarog, A. Setyanto, dan H. Sismoro, “Sistem klasifikasi pada penyakit breast cancer dengan menggunakan metode Naïve Bayes,” Creat. Inf. Technol. J., vol. 6, no. 2, hlm. 109, 2021. DOI: https://doi.org/10.24076/citec.2019v6i2.246

A. Damuri, U. Riyanto, H. Rusdianto, dan M. Aminudin, “Implementasi data mining dengan algoritma Naïve Bayes untuk klasifikasi kelayakan penerima bantuan sembako,” J. Ris. Komput., vol. 8, no. 6, hlm. 219–225, 2021. DOI: http://dx.doi.org/10.30865/jurikom.v8i6.3655

P. Zhang, Z. Cui, Y. Wang, dan S. Ding, “Application of BPNN optimized by chaotic adaptive gravity search and particle swarm optimization algorithms for fault diagnosis of electrical machine drive system,” Electr. Eng., vol. 104, no. 2, hlm. 819–831, 2022.

Published

2023-02-17

Issue

Section

Articles