PARTIAL LEAST SQUARE (PLS) SEBAGAI METODE ALTERNATIF SEM BERBASIS VARIANS (LISREL) DALAM EKSPLORASI DATA SURVEY DAN DATA MINING
DOI:
https://doi.org/10.61769/telematika.v7i1.49Keywords:
SEM, PLS, Lisrel dan varians/covariansAbstract
Saat ini penggunaan analisis regresi , factor dan path analysis dalam analisis data survey maupun data mining menimbulkan banyak bias ketika dihadapkan dengan teori yang
mendasarinya. Hal ini dikarenakan penggunakan teknik analisis tersebut tidak melibatkan error pengukuran dan laten variabel dalam model pengukuran maupun model strukturalnya. SEM berbasis covarians – selanjtunya disebut LISREL - mampu mengatasi berbagai macam bias tersebut karena menyertakan eror pengukuran, dan laten variabel, namun terkendala dengan asumsi yang harus dipenuhi seperti jumlah sampel harus besar, normalitas data dan kompleksitas model. Partial Least Square adalah solusi yang terbaik karena tidak memerlukan asumsiasumsi seperti dalam LISREL.
Today, using Regression analysis, factor and path analysis in exploratory survey data and data mining cause many bias when confirmed with theory based on it. Many bias could happen because in the analysis which use them, measurement error, latent variables on measurement and structural model not included. Structural Equation Modeling (SEM) based on covariance - call LISREL - can handle many problem in bias because measurement error, latent variables on measurement and
structural model included in LISREL. but in LISREL has many assumption for example: needs many (big) sample, normality and model complexity. Partial Least Square is the alternative solution because these assumptions not required..
References
Heri Kurniawan dan sofyan Yamin. 2009. Structural Equation
Modelling: lebih mudah mengolah data kuesioner dengan Lisrel dan
smartPLS. Salemba Infotek: Jakarta
Setyo Hari Wijanto. 2008. Structural Equation Modelling dengan
Lisrel 8.8. Graha Ilmu: Yogyakarta.
Joreskog, K. G & Sorbom, D. (1996). LISREL 8: User’s
Reference Guide, Scientific Software International, Inc, Chicago.
Downloads
Published
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.