Analisis Sentimen Terhadap Pariwisata di Masa Covid-19 Menggunakan Naïve Bayes

Authors

  • Daniel Arsa Universitas Jambi
  • Indra Weni Universitas Jambi
  • Agil Fahreza Universitas Jambi

DOI:

https://doi.org/10.61769/telematika.v17i1.450

Keywords:

Sentiment analysis, Covid-19, Naïve Bayes, tourism, text mining

Abstract

The tourism industry is a sector that has the potential to be developed as a source of state income. The tourism sector is the second largest source of state revenue after taxes. The arrival of tourists in an area has an impact on local resident who have provided prosperity and prosperity in the vicinity. The Covid-19 pandemic that has occurred in the world has had a very broad impact, including on the tourism sector and the creative economy. The decline in foreign tourist arrivals resulted in huge losses. This creates a public response to government policies. The community's response to tourism can be seen in social media. One of the most popular social media is Twitter. Obtained as many as 3000 tweet data that will be classified using the Naïve Bayes algorithm. Naive Bayes is a text mining technique to build a simple classifier model but has high accuracy in classifying. With the use of the Naive Bayes algorithm in this study, the results obtained are 62% accuracy values with an average value of 62% precision, 62% recall value, and 62% F1-score value.

Author Biographies

Daniel Arsa, Universitas Jambi

Information Systems Study Program

Indra Weni, Universitas Jambi

Information Systems Study Program

Agil Fahreza, Universitas Jambi

Information Systems Study Program

References

Direktorat Jenderal Pencegahan dan Pengendalian Penyakit (P2P), “Pedoman Pencegahan dan Pengendalian Coronavirus Disease (Covid-19),” Jakarta: Kementerian Kesehatan RI. 2020. hlm.0–115.

A. Rausanfita, P. P. Adikara, dan S. Adinugroho. "Analisis sentimen Twitter menggunakan Ensemble Feature dan metode Extreme Learning Machine (ELM) (studi kasus: Samsung Indonesia)", Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 12, hlm. 6409-6417.

A. F. Watratan, Arwini Puspita. B, dan D. Moeis, “Implementasia algoritme Naive Bayes untuk memprediksi tingkat penyebaran Covid-19 di Indonesia,” J. Appl. Comput. Sci. Technol., vol. 1, no. 1, hlm. 7–14, 2020. DOI: 10.52158/jacost.v1i1.9.

T. R. Patil dan S. S. Sherekar, “Performance analysis of ANN and Naive Bayes classification algorithm for data classification,” Int. J. Intell. Syst. Appl. Eng., vol. 7, no. 2, hlm. 88–91, 2013. DOI: 10.18201/ijisae.2019252786.

F. Zamachsari, G. V. Saragih, Susafa’ati, dan W. Gata, “Analisis sentimen pemindahan ibu kota negara dengan Feature Selection,” J. Resti (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 3, hlm. 504–512, 2020.

A. M. Pravina, I. Cholissodin, dan P. P. Adikara, “Analisis sentimen tentang opini maskapai penerbangan pada dokumen Twitter menggunakan algoritme Support Vector Machine (SVM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, hlm. 2789–2797, 2019.

D. Normawati dan S. A. Prayogi, “Implementasi Naïve Bayes classifier dan confusion matrix pada analisis sentimen berbasis teks pada Twitter,” J. Sains Komput. Inform., vol. 5, no. 2, hlm. 697–711, 2021.

F. A. Muttaqin dan A. M. Bachtiar, “Implementasi text mining pada aplikasi pengawasan penggunaan internet anak ‘Dodo Kids Browser',” J. Ilm. Komput. dan Inform., hlm. 1–8, 2016.

A. Alfiani Mahardhika, R. Saptono, dan R. Anggrainingsih, “Sistem klasifikasi feedback pelanggan dan rekomendasi solusi atas keluhan di UPT Puskom UNS dengan algoritme Naive Bayes classifier dan cosine similiarity,” J. Teknol. Inf. ITSmart, vol. 4, no. 1, hlm. 36, 2016, DOI: 10.20961/its.v4i1.1806.

H. Yun, “Prediction model of algal blooms using logistic regression and confusion matrix,” Int. J. Electr. Comput. Eng., vol. 11, no. 3, hlm. 2407–2413, 2021. DOI: 10.11591/ijece.v11i3.pp2407-2413.

M. Z. Al-Taie, S. Kadry, dan J. P. Lucas, “Online data preprocessing: A case study approach,” Int. J. Electr. Comput. Eng., vol. 9, no. 4, hlm. 2620–2626, 2019. DOI: 10.11591/ijece.v9i4.pp2620-2626.

Published

2022-10-31

Issue

Section

Articles