Analisis Sentimen Terhadap Pariwisata di Masa Covid-19 Menggunakan Naïve Bayes
DOI:
https://doi.org/10.61769/telematika.v17i1.450Keywords:
Sentiment analysis, Covid-19, Naïve Bayes, tourism, text miningAbstract
The tourism industry is a sector that has the potential to be developed as a source of state income. The tourism sector is the second largest source of state revenue after taxes. The arrival of tourists in an area has an impact on local resident who have provided prosperity and prosperity in the vicinity. The Covid-19 pandemic that has occurred in the world has had a very broad impact, including on the tourism sector and the creative economy. The decline in foreign tourist arrivals resulted in huge losses. This creates a public response to government policies. The community's response to tourism can be seen in social media. One of the most popular social media is Twitter. Obtained as many as 3000 tweet data that will be classified using the Naïve Bayes algorithm. Naive Bayes is a text mining technique to build a simple classifier model but has high accuracy in classifying. With the use of the Naive Bayes algorithm in this study, the results obtained are 62% accuracy values with an average value of 62% precision, 62% recall value, and 62% F1-score value.
References
Direktorat Jenderal Pencegahan dan Pengendalian Penyakit (P2P), “Pedoman Pencegahan dan Pengendalian Coronavirus Disease (Covid-19),” Jakarta: Kementerian Kesehatan RI. 2020. hlm.0–115.
A. Rausanfita, P. P. Adikara, dan S. Adinugroho. "Analisis sentimen Twitter menggunakan Ensemble Feature dan metode Extreme Learning Machine (ELM) (studi kasus: Samsung Indonesia)", Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 12, hlm. 6409-6417.
A. F. Watratan, Arwini Puspita. B, dan D. Moeis, “Implementasia algoritme Naive Bayes untuk memprediksi tingkat penyebaran Covid-19 di Indonesia,” J. Appl. Comput. Sci. Technol., vol. 1, no. 1, hlm. 7–14, 2020. DOI: 10.52158/jacost.v1i1.9.
T. R. Patil dan S. S. Sherekar, “Performance analysis of ANN and Naive Bayes classification algorithm for data classification,” Int. J. Intell. Syst. Appl. Eng., vol. 7, no. 2, hlm. 88–91, 2013. DOI: 10.18201/ijisae.2019252786.
F. Zamachsari, G. V. Saragih, Susafa’ati, dan W. Gata, “Analisis sentimen pemindahan ibu kota negara dengan Feature Selection,” J. Resti (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 3, hlm. 504–512, 2020.
A. M. Pravina, I. Cholissodin, dan P. P. Adikara, “Analisis sentimen tentang opini maskapai penerbangan pada dokumen Twitter menggunakan algoritme Support Vector Machine (SVM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, hlm. 2789–2797, 2019.
D. Normawati dan S. A. Prayogi, “Implementasi Naïve Bayes classifier dan confusion matrix pada analisis sentimen berbasis teks pada Twitter,” J. Sains Komput. Inform., vol. 5, no. 2, hlm. 697–711, 2021.
F. A. Muttaqin dan A. M. Bachtiar, “Implementasi text mining pada aplikasi pengawasan penggunaan internet anak ‘Dodo Kids Browser',” J. Ilm. Komput. dan Inform., hlm. 1–8, 2016.
A. Alfiani Mahardhika, R. Saptono, dan R. Anggrainingsih, “Sistem klasifikasi feedback pelanggan dan rekomendasi solusi atas keluhan di UPT Puskom UNS dengan algoritme Naive Bayes classifier dan cosine similiarity,” J. Teknol. Inf. ITSmart, vol. 4, no. 1, hlm. 36, 2016, DOI: 10.20961/its.v4i1.1806.
H. Yun, “Prediction model of algal blooms using logistic regression and confusion matrix,” Int. J. Electr. Comput. Eng., vol. 11, no. 3, hlm. 2407–2413, 2021. DOI: 10.11591/ijece.v11i3.pp2407-2413.
M. Z. Al-Taie, S. Kadry, dan J. P. Lucas, “Online data preprocessing: A case study approach,” Int. J. Electr. Comput. Eng., vol. 9, no. 4, hlm. 2620–2626, 2019. DOI: 10.11591/ijece.v9i4.pp2620-2626.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Daniel Arsa, Indra Weni, Agil Fahreza

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.