Perbaikan Kualitas Citra Menggunakan Metode Fuzzy Type-2
DOI:
https://doi.org/10.61769/telematika.v16i2.420Keywords:
Image quality ehancement, contrast, uncertainty, histogram equalization, fuzzy type-1, fuzzy type-2, perbaikan kualitas citra, kontras, ketidakpastianAbstract
Image enhancement is applied to an image that has low contrast. Histogram Equalization (HE) is a general method used to improve the quality of an image. However, its drawback is for a low contrast image, which is solved by using the type-1 fuzzy method. Nonetheless, due to its crisp membership function, then type-1 fuzzy will result in uncertainty when implemented on an image with a non-homogenous contrast. In this research, type-2 fuzzy will be applied because its membership function can model and minimize the uncertainty to increase the image quality. Image enhancement is evaluated quantitatively and qualitatively. Mean Square Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) are used as quantitative measures for the three image enhancement techniques used, i.e., HE, type-1 fuzzy, and type-2 fuzzy. In general, based on the simulation results, type-2 fuzzy gives the best performance. Meanwhile, the qualitative measure is done through a survey of several respondents. The respondents agree that type-2 fuzzy shows the best performance for image enhancement qualitatively. Quantitatively, there is not the best among the three type-2 fuzzy methods for image enhancement because their MSE and PSNR were varied. Moreover, neither qualitatively, due to subjective issue among the respondents when looking at the resulting image, the respondents agree there is none the best one among them so that it needs the same perception about the quality of a good image.
Perbaikan kualitas citra biasanya diterapkan untuk citra yang memiliki kontras yang rendah. Metode Histogram Equalization (HE) adalah metode yang umum digunakan untuk memperbaiki kualitas citra. Namun, metode ini mempunyai kekurangan untuk citra yang memiliki level kekontrasan yang rendah. Kekurangan ini dapat diatasi dengan menggunakan metode fuzzy tipe-1. Karena sifat keanggotaan metode fuzzy type-1 bersifat crisp (tajam), maka akan berakibat ketidakpastian saat diterapkan untuk citra yang mempunyai distribusi kontras yang tidak homogen. Oleh karena itu, dalam penelitian ini akan diimplementasikan metode fuzzy type-2. Himpunan fungsi keanggotaan fuzzy type-2 mampu memodelkan dan meminimalisasi ketidakpastian sehingga kualitas citra dapat ditingkatkan. Penilaian terhadap perbaikan kualitas citra dilakukan secara kuantitatif dan kualitatif. Pengujian kuantitatif dilakukan dengan menggunakan metrik Mean Square Error (MSE) dan Peak Signal-to-Noise Ratio (PSNR) terhadap perbaikan kualitas citra yang menggunakan metode HE, metode fuzzy type-1, dan metode fuzzy type-2. Berdasarkan pengujian, secara umum metode fuzzy type-2 menghasilkan perbaikan kualitas citra yang paling baik. Evaluasi pengujian kualitatif dilakukan melalui survei responden. Secara umum responden menilai perbaikan kualitas citra dengan metode fuzzy type-2 akan menghasilkan visual citra yang lebih baik. Di antara ketiga kategori metode fuzzy type-2, secara kuantitatif hasilnya tidak menunjuk kepada satu kategori yang terbaik karena nilai MSE dan PSNR yang masih bervariasi. Demikian pula secara kualitatif, responden tidak memilih satu kategori terbaik akibat adanya faktor subyektivitas responden saat melihat sebuah citra. Untuk itu, dibutuhkan kesamaan persepsi tentang arti kualitas sebuah citra yang baik.
References
P. Mittal, R. K. Saini, dan N. K. Jain. “Image enhancement using fuzzy logic techniques”, dalam Proceedings of Soft Computing: Theories and Applications (SoCTA), 742, 2017, hlm. 537-546.
J. M. Mendel dan R. I. B. John. “Type-2 fuzzy sets made simple”, IEEE Transactions on Fuzzy Systems, vol. 10, no. 2, hlm. 117-27, 2002.
E. Onyedinma, I. Onyenwe, dan H. Inyiama. “Performance evaluation of histogram equalization and fuzzy image enhancement techiniques on low contrast images”, International Journal of Computer Science and Software Engineering (IJCSSE), vol 8, no. 7, hlm. 144-150, July 2019.
P. Ensafi dan H. R. Tizhoosh. “Type-2 fuzzy image enhancement”, (ICIAR), LNCS 3656, hlm. 159–166, 2005.
T. Chaira. “Rank-ordered filter for edge enhancement of cellular images using interval type ii fuzzy set”, Journal of Medical Imaging, vol. 2(4), Oct–Dec 2015.
D. J. Bora dan R. S. Thakur. “An efficient technique for medical image enhancement based on interval type-2 fuzzy set logic”, dalam Proceeding of Progress in Computing, Analytics and Networking (ICCAN) 710, 2017, hlm. 667-678.
N. K. Kansal dan A. Bala. “Fuzzy Techniques for Image Enhancement.” Computer Science and Engineering Department, Thapar University, India, 2010.
G. Maragatham dan S. Md. M. Roomi. “A review of image contrast enhancement methods and techniques”, Research Journal of Applied Sciences, Engineering and Technology (Res. J. Appl. Sci. Eng. Technol), 9(5), hlm. 309-326, 2015.
Cahyasaputra, B. “Perbandingan Perbaikan Kualitas Citra dengan Metode Image Adjustment, Histogram Equalization, dan Adaptive Histogram Equalization”, Tugas Akhir, Teknik Elektro, Universitas Kristen Maranatha, Bandung, 2020.
P. Mishra dan K. L. Sinha. “A highly efficient color image contrast enhancement using fuzzy based contrast intensification operator.” Department of Computer Science and Engineering, India, 2015.
Downloads
Published
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.