Meningkatkan Akurasi Long-Short Term Memory (LSTM) pada Analisis Sentimen Vaksin Covid-19 di Twitter dengan Glove
DOI:
https://doi.org/10.61769/telematika.v16i2.400Keywords:
Long Short Term Memory (LSTM), Bi-LSTM, sentiment analysis, Glove method, Covid-19, analisis sentimen.Abstract
Covid-19 began to appear in early 2020. The spread of this outbreak is often discussed on Twitter, especially about vaccine procurement. For this reason, it is necessary to have a sentiment analysis on the opinion on vaccine procurement. Sentiment analysis will use the Long Short Term Memory (LSTM) method. However, the level of accuracy of LSTM itself is not accurate enough compared to another method, such as Bi-LSTM. Therefore, it is necessary to optimize so that the LSTM model can predict accurately and compete with the accuracy of Bi-LSTM. Optimization is done by using the Glove method. The Glove method works by counting the occurrences of one word with another and then converting it to a vector. Words that often appear together will have vector values that are close to each other. This vector value is then used as a reference and inserted into the embedding layer of the LSTM model. The application of LSTM coupled with the Glove method resulted in an accuracy of 89% (87% for LSTM and 88% for Bi-LSTM). In this study, the Glove method could increase the accuracy of the used model by 2%.
Covid-19 mulai muncul di awal tahun 2020. Penyebaran wabah ini sering dibicarakan di Twitter, terutama tentang pengadaan vaksin. Untuk itu, perlu adanya analisis sentimen terhadap opini pengadaan vaksin. Analisis sentimen akan menggunakan metode Long Short Term Memory (LSTM). Namun, tingkat akurasi LSTM sendiri belum cukup akurat dibandingkan dengan metode lainnya, seperti Bi-LSTM. Oleh karena itu, perlu dilakukan optimalisasi agar model LSTM dapat memprediksi secara akurat dan dapat menyaingi akurasi Bi-LSTM. Optimalisasi dilakukan dengan menggunakan metode Glove. Metode Glove bekerja dengan menghitung kemunculan satu kata dengan kata lainnya lalu mengonversinya menjadi vektor. Kata yang sering muncul secara bersamaan akan memiliki nilai vektor yang saling mendekati. Nilai vektor ini kemudian dijadikan referensi dan dimasukkan ke lapisan embedding pada model LSTM. Penerapan LSTM yang ditambah dengan metode Glove menghasilkan akurasi sebesar 89% (87% untuk LSTM dan 88% untuk Bi-LSTM). Dalam penelitian ini penerapan metode Glove dapat meningkatkan akurasi model sebesar 2%.
References
D. Hernikawati, “Kecenderungan tanggapan masyarakat terhadap vaksin sinovac berdasarkan Lexicon Based Sentiment Analysis,” Jurnal Ilmu Pengetahuan dan Teknologi Komunikasi, vol. 23, no. 1, hlm. 21–31, 2021.
D. K. Setyadi, “Peran Twitter dalam digital customer relationship management di industri perbankan,” Journal Communication Spectrum: Capturing New Perspectives in Communication, vol. 9, no. 2, hlm. 110–124, 2019.
S. Yousefinaghani, dkk., “An analysis of Covid-19 vaccine sentiments and opinions on Twitter,” International Journal of Infectious Diseases., vol. 108, hlm. 256–262, 2021.
N. Rakhmawati, dkk., “Analisis klasifikasi sentimen pengguna media sosial Twitter terhadap pengadaan vaksin Covid-19,” JIEET (Journal Inf. Eng. Educ. Technol.), vol. 4, no. 2, hlm. 90–92, 2020.
S. Ernawati, dkk., “Penerapan algoritme K-Nearest Neighbors pada analisis sentimen review agen travel,” J. Khatulistiwa Inform., vol. VI, no. 1, hlm. 64–69, 2018.
B. A. Aprian, Y. Azhar, dan V. R. S. Nastiti, “Prediksi pendapatan kargo menggunakan arsitektur Long Short Term Memory”, Jurnal Komputer Terapan (JKT), vol. 6, no. 2, hlm. 148–157, 2020.
M. O. Ibrohim, dkk, “Identify abusive and offensive language in indonesian twitter using deep learning approach,” J. Phys. Conf. Ser., vol. 1196, no. 1, 2019.
R. Adarsh, dkk, “Comparison of VADER and LSTM for sentiment analysis,” Int. J. Recent Technol. Eng., vol. 7, no. 6, hlm. 540–543, 2019.
Z. Hameed, dkk, “Sentiment Classification Using a Single-Layered BiLSTM Model,” IEEE Access, vol. 8, hlm. 73992–74001, 2020.
S. Hanggara, T. M. Akhriza, dan M. Husni, “Aplikasi web untuk analisis sentimen pada opini produk dengan metode Naive Bayes Classifier,” dalam Seminar Nasional Inovasi dan Aplikasi Teknologi di Industri, 4(2), hlm. A33.1-A33.6.
Y, Zhu, W, Zheng, dan H. Tang, "Interactive dual attention network for text sentiment classification", Computational Intelligence and Neuroscience, vol. 2020, article ID 8858717, 2020.
Downloads
Additional Files
Published
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.