Analisis Clustering Pelanggan Berdasarkan Data Transaksi Penjualan Menggunakan Metode Recency, Frequency, Monetary (RFM) (Studi Kasus: CV XYZ)
DOI:
https://doi.org/10.61769/telematika.v16i2.379Keywords:
retail, transaction data, purchase, RFM, clustering, K-means, potential customer, data transaksi, penjualan, pelanggan potensialAbstract
CV XYZ is a company engaged in retail clothing and accessories for Muslim women's clothing located in Bandung. The products sold consist of 5 types of categories. Sales business processes that occur in the company generate sales transaction data. CV XYZ expects that the transaction data can be processed and used to get information about customer segmentation using the proper method. This research developed a web-based system that can process and utilize transaction data using the clustering method. The selection of the algorithm and the number of clusters is obtained from the evaluation process using the standard deviation technique and the Davies Bouldin Index method. As a result, K-means is the most appropriate algorithm for CV XYZ's transaction data by dividing customers into 3 clusters.
CV XYZ adalah sebuah peusahaan yang bergerak di bidang retail pakaian dan aksesoris busana muslim wanita yang berlokasi di Bandung. Produk yang dijual terdiri dari 5 jenis kategori. Proses bisnis penjualan yang terjadi di perusahaan menghasilkan data transaksi penjualan. CV XYZ mengharapkan data transaksi yang dimiliki dapat diolah dan dimanfaatkan untuk mendapatkan informasi mengenai segmentasi pelanggan dengan menggunakan metode yang tepat. Melihat adanya peluang untuk memanfaatkan data transaksi tersebut, penelitian ini mengembangkan sebuah sistem berbasis web yang dapat mengolah dan memanfaatkan data transaksi dengan menggunakan metode clustering. Penentuan algoritme dan jumlah cluster diperoleh dari proses evaluasi yang menggunakan teknik simpangan baku dan metode Davies Bouldin Index. Hasilnya, K-means adalah algoritme yang paling tepat untuk diterapkan pada data transaksi CV XYZ dengan membagi pelanggan menjadi 3 cluster.
References
M. Ferguson, Big Data- Why Transaction Data is Mission Critical To Success. England: Intelligent Business Strategies, 2014.
Strategic Marketing (20 Januari, 2019). Five Benefits of a Customer Database [Daring]. Tersedua: https://thinkstrategic.com/five-benefits-of-a-customer-database/.
Ayuliana, F. Yosieto. “Pemanfaatan data warehouse proses penjualan dan pembelian untuk dukungan pengambilan keputusan”, Jurnal Imiah FIFO, volume VII, no. 2, November 2015.
A. D. Savitri, F. A. Bachtiar, dan N. Y. Setyawan, “Segmentasi pelanggan menggunakan metode k-means clustering berdasarkan model RFM pada klinik kecantikan (studi kasus: Belle Crown Malang)” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 9, hlm. 2957-2966, September 2018.
C. C. Aggarwal, Data Mining: The Textbook. United States of America: Springer International Publishing, 2015.
C. C. Aggarwal, Data Clustering: Algorithms and Apllication. United Kingdom: King Taylor & Francis Group, 2014.
E. M. Sipayung, H. Maharani, dan B. A. Paskhadira, “Designing customer target recommendation system using K-means clustering method”, IJITEE, vol 1, no. 1, hlm. 1-7, Maret 2017.
C. Fiarni, H. Maharani, dan N. Calista, “Product Recommendation System Design Using Cosine Similarity and Content-based Filtering Methods”, IJITEE, vol. 3, no. 2, hlm. 42-48, Juni 2019.
F. Satria dan R. Z. A. Aziz. ”Perbandingan kinerja metode Ward dan K-means dalam menentukan cluster data mahasiswa pemohon beasiswa (studi kasus: STMIK Pringsewu)” Jurnal TIM Darmajaya vol. 2, no. 01, hlm. 2442-5567, Mei 2016.
F. Irhamni, F. Damayanti, B. Khusnul, dan Mifftachul. "Optimalisasi pengelompokan kecamatan berdasarkan indikator pendidikan menggunakan metode clustering dan Davies Bouldin Index", dalam Prosiding Seminar Nasional Sains dan Teknologi (Semnastek) 2014, Jakarta, 12 November 2014.
Downloads
Published
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.