Evaluasi Metode Ekstraksi Fitur Hu Moment Invariants untuk Pengenalan Aktivitas Manusia
DOI:
https://doi.org/10.61769/telematika.v15i2.367Keywords:
Human Activity Recognition (HAR), Hu Moment Invariants, Zernike Moment, HOG, Gait Pattern, SVMAbstract
Vision-based Human Activity Recognition has been widely used due to a bunch of video data availability in the present days through CCTV and another mechanism which contains some human activities. This data is going to be very useful to improve and automate decision-making in several fields including security surveillance. In this field, it is important to achieve a good performance (i.e., accuracy) inefficient computational time. While there are many approaches in this field, most complex approaches require high computational time. In this work, we are evaluating Hu Moments performance, as well as being compared to other methods (i.e., Zernike Moment and Histogram of Oriented Gradient) by its accuracy and computational time. We also improved HAR flow by adding image denoising which has proven effective in increasing accuracy. The testing process includes videos that contain human activities such as walking, jogging, and running. The result shows that Hu Moments is superior among other methods, however there’s also some room for improvements found through this experiment.
Dalam era di mana terdapat banyak data video yang berisi aktivitas manusia, baik melalui rekaman CCTV maupun mekanisme lain, data tersebut menjadi sangat berharga untuk dapat diproses untuk pengenalan aktivitas manusia, atau Human Activity Recognition (HAR) yang dapat membantu pengambilan keputusan, di antaranya security surveillance. Untuk itu, diperlukan akurasi yang tinggi dan waktu komputasi yang efisien. Meskipun telah banyak metode di ranah ini, suatu teknik yang kompleks pada umumnya membutuhkan waktu komputasi yang tinggi. Dalam penelitian ini, dilakukan evaluasi dengan menggunakan metode Hu Moments yang akan dibandingkan dengan metode lainnya, yaitu Zernike Moment dan Histogram of Oriented Gradient (HOG), untuk segi akurasi dan waktu komputasinya. Ditambahkan juga tahap image denoising yang mampu meningkatkan akurasi. Proses pengujian menggunakan berbagai data video aktivitas manusia yang meliputi: berjalan, joging, dan berlari. Hasil riset menunjukkan bahwa metode Hu Moments memiliki performa yang lebih unggul dibandingkan metode ekstraksi fitur lainnya. Berdasarkan eksperimen yang dilakukan, terdapat beberapa area yang masih dapat ditingkatkan, untuk penelitian selanjutnya.
References
S. Jiaxin, C. Zhenxin, Z. Zian, dan H. Yongmei, “Research on Recognition of Indoor Fall Behaviors Based on Video Monitoring,” dalam 2017 Chinese Automation Congress (CAC), Jinan, China, 2017.
E. Cippitelli, S. Gasparrini, E. Gambi, dan S. Spinsante, “A Human Activity Recognition System using Skeleton Data from RGBD Sensors,” Computational Intelligence and Neuroscience, vol. 2016, 2016.
S. Kamal, A. Jalal, dan D. Kim, “Depth Images-based Human Detection, Tracking and Activity Recognition Using Spatiotemporal Features and Modified HMM,” Journal of Electrical Engineering and Technology, 2016.
C. Dhiman dan D.K. Vishwakarma, “A Robust Framework for Abnormal Human Action Recognition using R-Transform and Zernike Moments in Depth Videos,” IEEE Sensors Journal, vol. 19, no. 13, 2019.
M.P. Chandrashekar, B. Jagadeesh, dan M.N. Meghana, ”An Approach of Understanding Human Activity Recognition and Detection for Video Surveillance using HOG Descriptor and SVM Classifier,” dalam Proceedings of 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (ICCTCEEC-2017), India, 2017, hlm. 481-485.
H. Ming-Kuei, ”Visual pattern recognition by moment invariants,” Information Theory, IRE Transactions, vol. 8, 1962.
C. M. Bishop, Pattern Recognition and Machine Learning, edisi ke-1, Berlin: Springer Science + Business Media, 2006.
A. Jayaswal, M. Dembrani, dan S. Seragi, Image Denoising Using Adaptive Filter, edisi ke-1, Saarbrucken: LAP, 2017.
J. Flusser, T. Suk, dan B. Zitov, Moments and Moment Invariants in Pattern Recognition, edisi ke-1, London: Wiley, 2009.
N. Christianini dan E. Ricci, “Support Vector Machines,” dalam Encylopedia of Algorithms. M. Y. Kao Ed., New York: Springer, 2016, hlm. 2170-2174.
J. P. Gupta, P. Dixit, N. Singh, dan V.B. Aemwal, “Analysis of Gait Pattern to Recognize the Human Activities”, International Journal of Interactive Multimedia and Artificial Intelligence, vol. 2, hlm. 7-16, 2014.
Downloads
Published
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.