Aplikasi Knowledge Management System untuk Komplikasi Penyakit Diabetes Berdasarkan Profil Pasien Menggunakan Metode J48
DOI:
https://doi.org/10.61769/telematika.v15i1.335Keywords:
KMS, data mining, J48, profile matching, komplikasi diabetesAbstract
Patients with diabetes have a high risk to suffer from other complications. In Indonesia, there are top three of diabetes complications incidents, which are retinopathy, neuropathy, and proteinuria. To prevent the worsening complication level and condition, the information about how to control and to detect early symptoms of diabetes complications become crucial. The problem is that the information about complications are limited and still widely obtained by conventional sharing between health workers and diabetic patient, this makes the complications of diabetes is often too late to be handled. Therefore, in this research, we build a Knowledge Management System (KMS) using Data Mining Algorithm J48 techniques to extract diabetes complication dominant factors. This proposed system is also able to work collaboratively between diabetics, families, and health workers, to share information based on the similarity of the profile of diabetic patient. Algorithm J48 was used to classify patient profile attributes including age, sex, duration of suffering, BMI, blood pressure, blood sugar levels, and family history, to generate rules. To generated rules and a profile matching method used as model of the proposed system, we used Indonesian diabetics data. Based on evaluation of the proposed system, it results conformity 68% with the original medical record of diabetic complication. In conclusion, the system could be used as an alternative to the early detection system.
Diabetes sebagai penyakit kronis, juga adanya potensi komplikasi penyakit yang disebabkannya. Dengan prevelansi komplikasi tertinggi adalah retinopati, neuropati, dan proteinuria. Pengetahun mengenai faktor-faktor risiko terkait komplikasi tersebut dapat membantu dalam deteksi dini, sehingga dapat mengurangi risiko dan mempercepat penanganan pasien. Permasalahannya, informasi mengenai komplikasi masih terbatas serta diperoleh secara konvensional dengan melakukan sharing antara tenaga kesehatan dan penderita diabetes, sehingga komplikasi diabetes seringkali terlambat untuk ditangani. Pada penelitian ini dilakukan perancangan knowledge managementSystem(KMS) komplikasi diabetes, dengan mengadopsi teknik data mining J48 dan profile matching dalam pengklasifikasian potensi komplikasi diabetes yang dialami oleh pasien tersebut. Pada sistem terdapat pula fitur berbagi informasi dan pengetahuan. Hal ini dilakukan secara kolaborasi antara penderita diabetes, keluarga dan tenaga kesehatan. Hasil evaluasi terhadap sistem usulan diperoleh 68% kemungkinan komplikasi yang sesuai dengan komplikasi berdasarkan data rekam medis penderita diabetes. Sehingga sistem dapat digunakan sebagai alternative early detection sistem.
References
World Health Organization, Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia. Switzerland: Who publication, 2006.
Pusat Data dan Informasi Kementerian Kesehatan RI, Situasi dan Analisis Diabetes. Jakarta: InfoDatin, 2011.
Fiarni C., “Design of Knowledge Acquisition Model in Glaucoma Medical Treatments Recommended System,” International Conference on Computing and Applied Informatics, 2016, paper Bandung: International Seminar on Industrial Engineering and Management. 2015.
Becerra-Fernandez, Irma dan Rajiv Sabherwal, Knowledge Management Systems and Processes. New York: M.E.Sharpe, Inc, 2010.
R.L Mantaras, D. Mcsherry, D. Bridge, D. Leake, B. Smyth, S. Craw, B. Falting, M.L Maher, M.T Cox, K. Forbus, M. Keane, A. Aamodt, I. Watson, Retrieval, reuse, revision and retention in casebased reasoning The Knowledge Engineering Review Vol. 20:3. 215-240, Cambridge University Press :United Kingdom. 2006.
Yusharmen, Drs, . Petunjuk Teknis Pengukuran Faktor Risiko Diabetes Melitus. Jakarta : Departemen Kesehatan Republik Indonesia. 2008.
Pantelis Natsiavas, Marie-Christine Jaulent, Vassilis Koutkias. A Knowledge-Based Platform for Assessing Potential Adverse Drug Reactions at the Point of Care: User Requirements and Design.. MEDINFO 2019: Health and Wellbeing e-Networks for All, 264, pp.1007-1011, 2019.
Sanjian Chen, Lu Feng, Michael R. Rickels, Amy Peleckis, Oleg Sokolsky, and Insup Lee, "A Data-Driven Behavior Modeling and Analysis Framework for Diabetic Patients on Insulin Pumps", The IEEE International Conference on Healthcare Informatics 2015 . October 2015.
Tresnawati L.H, Kusuma W.A, Hartono S, Hasibuan L.S, “Asosiasi Single Nucleoride Polymorphism pada diabetes melitus tipe 2 menggunakan random forest regression”. JNTETI, Vol. 8, No. 4, November 2019
C.Fiarni. “Design of Knowledge Management System for Diabetic Complication Diseases. Journal of Physics: Conference Series,Volume 801,Number 1, 2017.
C Fiarni, EM Sipayung, S Maemunah, “Analysis and Prediction of Diabetes Complication Disease using Data Mining Algorithm” Procedia Computer Science, Volume 161, Pages 449-457, 2019.
Downloads
Published
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.