Aplikasi Sensor Fusion untuk Mendeteksi Posisi dan Arah Pergerakan Ponsel Pintar di Dalam Ruangan
DOI:
https://doi.org/10.61769/telematika.v14i1.319Keywords:
Sensor fusion, ponsel pintar, sensor, posisi, orientasiAbstract
The development of cellular technology and telecommunications is currently giving birth to more specific services, such as location-based smart phone services in the room. Indoor location-based services on mobile require an accurate and real-time position and orientation detection system. One technology that is often used to detect position is the Global Positioning System (GPS), but it is difficult to use to detect indoor positions. The use of accelerometer, gyroscope, magnetometer and GPS on smartphone is one method that can facilitate the system without the need of additional devices. This research combines accelerometer, gyroscope and magnetometer (sensor fusion) to get the latest position and orientation from the smartphone. Data from each sensor has a varied amount of noise and is relatively large so that to get the position and orientation of a smartphone that is minimal noise can use the Kalman filter algorithm on the detection algorithm that will be built in computing software. Transferring sensor data from a smartphone to a computing device can be bridged by a data recorder application that runs on a smartphone. The results of this study are expected to be the basis or new input for indoor location-based services.
Perkembangan teknologi dan telekomunikasi seluler saat ini begitu cepat melahirkan layanan yang lebih spesifik, seperti layanan berbasis lokasi ponsel pintar dalam suatu ruangan (indoor positioning system). Layanan berbasis lokasi dalam ruangan pada ponsel membutuhkan sistem deteksi posisi dan orientasi yang akurat dan real-time. Salah satu teknologi yang sering digunakan untuk mendeteksi posisi adalah Global Positioning System (GPS), namun GPS sulit digunakan untuk mendeteksi posisi di dalam ruangan. Penggunaan sensor akselerometer, giroskop, magnetometer dan GPS pada ponsel merupakan salah satu metode yang dapat memudahkan sistem untuk mendapatkan posisi dan orientasi ponsel di dalam ruangan. Sensor-sensor tersebut lebih mudah diakses dan tidak memerlukan perangkat tambahan. Untuk itu, penelitian ini akan melakukan penggabungan sensor akselerometer, giroskop dan magnetometer (sensor fusion) untuk mendapatkan posisi dan orientasi dari ponsel. Data dari setiap sensor memiliki jumlah noise yang bervariatif dan tergolong besar sehingga untuk mendapatkan posisi dan orientasi ponsel yang minim noise dapat menggunakan algoritme filter Kalman pada algoritme deteksi yang akan dibangun. Perpindahan data sensor dari ponsel ke
References
W. Kang, S. Nam, Y. Han and S. Lee, "Improved heading estimation for smartphone-based indoor positioning systems," 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC), pp. 2449-2453, Sydney, Sept. 2012.
U. Shala and A. Rodriguez, "Indoor Positioning using Sensor-fusion in Android Devices," M.S. Thesis, Dept. Computer Science, Kristianstad Univ., Kristianstad, SWE, 2011.
B. Muset and S. Emerich, "Distance Measuring using Accelerometer and Gyroscope Sensors, " Carpathian Journal of Electronic and Computer Engineering, vol. 5, pp. 83-86, 2012.
J. Qian, J. Ma, R. Ying, P. Liu and L. Pei. "An improved indoor localization method using smartphone inertial sensors," 2013 International Conference on Indoor Positioning and Indoor Navigation, pp. 1-7, Montbeliard-Belfort, Oct. 2013.
Android Develop Team. "Sensor Overview." Internet: https://developer.android.com/guide/topics/sensors/sensors_overview, [May 17th, 2019].
Z.-A. Deng, Y. Hu, J. Yu, and Z. Na, “Extended Kalman Filter for Real Time Indoor Localization by Fusing WiFi and Smartphone Inertial Sensors,” Micromachines, vol. 6, no. 4, pp. 523–543, Apr. 2015.
W. Kang and Y. Han, "SmartPDR: Smartphone-Based Pedestrian Dead Reckoning for Indoor Localization," IEEE Sensors Journal, vol. 15, no. 5, pp. 2906-2916, May 2015.
S. M. Delgado and A. D. Velasco, "Indoor Positioning using the Android Platform," M.S. Thesis, Dept. Computer Science & Engineering, Blekinge Inst. of Tech., Karlskrona, SWE, 2014.
Z. Chen, H. Zou, H. Jiang, Q. Zhu, Y. Soh, and L. Xie, “Fusion of WiFi, Smartphone Sensors and Landmarks Using the Kalman Filter for Indoor Localization,” Sensors, vol. 15, no. 1, pp. 715–732, Jan. 2015.
O. Walter, J. Schmalenstroeer, A. Engler and R. Haeb-Umbach, "Smartphone-based sensor fusion for improved vehicular navigation," 2013 10th Workshop on Positioning, Navigation and Communication (WPNC), pp. 1-6, 2013.
Downloads
Published
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.