Penerapan Histogram of Oriented Gradients, Principal Component Analysis dan AdaBoost untuk Sistem Pengenalan Wajah
DOI:
https://doi.org/10.61769/telematika.v13i2.225Keywords:
sistem pengenalan wajah, deteksi wajah, HAAR, histogram of oriented gradients, principal component analysis, adaptive boostingAbstract
This The human face image has a lot of information that can be used in the field of computer vision to create a human face recognition system. The method used in this study is the Histogram of Oriented Gradients (HOG) method used for feature extraction. The Principal Component Analysis (PCA) method is applied from the features of the HOG method to reduce the dimensionality of feature data from high to low without losing much of the information. Finally, the Adaptive Boosting method (AdaBoost) is used to process the resulting feature classification. Before performing facial recognition process, the initial treatment is done to detect and cut the face of the next part of the image pieces will be the same size so that the face taken has a uniform size. Based on the test results of cell, block and bins values, the best total eigenvalue and total iteration for this process were 8,16,4, -, 15 for the classifier using the HOG plus AdaBoost method with the resulting accuracy to recognize the face of 86% and 8.16,16,20,10 for classifier using HOG method, PCA with AdaBoost with accuracy level for face recognition of 96%.
Citra wajah manusia memiliki banyak informasi yang dapat digunakan pada bidang komputer vision untuk membuat sistem pengenalan wajah manusia. Metode yang digunakan pada penelitian kali ini adalah metode Histogram of Oriented Gradients (HOG) yang digunakan untuk ekstraksi fitur. Metode Principal Component Analysis (PCA) diterapkan dari hasil fitur metode HOG untuk mereduksi dimensionalitas data fitur dari tinggi ke rendah tanpa menghilangkan banyak informasi. Terakhir, metode Adaptive Boosting (AdaBoost) dipakai untuk proses klasifikasi fitur yang dihasilkan. Sebelum melakukan proses pengenalan wajah, dilakukan pengolahan awal untuk mendeteksi dan memotong bagian wajah yang selanjutnya bagian potongan citra akan di samakan ukurannya agar wajah yang terambil mempunyai ukuran seragam. Berdasarkan hasil pengujian nilai sel, block dan bins, jumlah eigen dan jumlah iterasi terbaik untuk keseluruhan pada proses ini adalah 8,16,4,-,15 untuk classifier menggunakan metode HOG dan AdaBoost dengan tingkat akurasi yang dihasilkan untuk mengenali wajah sebesar 86% dan 8,16,16,20,10 untuk classifier menggunakan metode HOG, PCA dengan AdaBoost dengan tingkat akurasi untuk pengenalan wajah sebesar 96%.
References
F. G. Zbeda, et al. "PCA-HOG Descriptors for Face Recognition in very Small Images," International Journal of Advanced Research in Computer Science and Software Engineering, Volume 6, Issue 9, 2016.
H. S. Dadi and G. K. Mohan Pillutla. Improved Face Recognition Rate Using HOG Features and SVM Classifier. IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), Volume 11, Issue 4, Ver. I, 2016.
M. Yao and C. Zhu. "SVM and Adaboost-based Classifiers with Fast PCA for Face Recognition". IEEE International Conference on Consumer Electronics-China (ICCE-China), 2016.
N. Dalal and B. Triggs. "Histograms of Oriented Gradients for Human Detection". IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005.
S. Chang, et al. "Histogram of the Oriented Gradient for Face Recognition," Tsinghua Science and Technology, Vol. 16 No. 2, 2011.
"Histogram of Oriented Gradients‖. [Online]. Available:
https://www.learnopencv.com/histogram-of-oriented-gradients/
R. Kaur and Er. Himanshi. "Face Recognition Using Principal Component Analysis". IEEE International Advance Computing Conference (IACC), 2015.
I. T. Jolliffe. Principal Component Analysis, 2nd Edition, USA: Springer, 2002.
Y. Freund and R. Schapire. "A decision-theoretic generalization of online learning and an application to boosting". Computational Learning Theory: Eurocolt’95, 1:23–37, 1995.
P. Harrington. "Machine Learning in Action". Manning Publications Company, 7:129–148, 2012.
Downloads
Published
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.