Penerapan Metode Single-Layer Feed-Forward Neural Network Menggunakan Kernal Gabor untuk Pengenalan Ekspresi Wajah
DOI:
https://doi.org/10.61769/telematika.v12i1.178Keywords:
Klasifikasi, Computer Vision, Expression, Gabor Filter, AdaboostAbstract
Expression is a common thing shown by humans to respond to an event. The face is one of the mediums that humans use to show their expressions. Facial expression consists of 7 are happy, sad, angry, scared, disgusted, shocked, and neutral. Humans can easily recognize expressions issued by a person and use them to be able to determine what reaction should be done to that person. It can be utilized by computers in order to interact more naturally with humans or can be utilized in the medical field to help the treatment of patients. In this study the method used to recognize facial expressions is Gabor as a method to extract features, Adaboost is used to select features, and neural networks are a method to classify facial expressions. For testing use the manually selected JAFFE dataset to remove imagery that has an expression that is less suited to the label. Using this method the introduction of facial expressions managed to get an accuracy of 52%. The results show that the Gabor function has a greater influence on the accuracy of AdaBoost than the parameter changes θ (theta) and σ (sigma).
Ekspresi merupakan hal yang biasa ditunjukkan oleh manusia untuk merespons suatu kejadian. Wajah adalah salah satu media yang digunakan manusia untuk menunjukkan ekspresinya. Ekspresi wajah terdiri atas 7 yaitu senang, sedih, marah, takut, jijik, terkejut, dan netral. Manusia dapat dengan mudah mengenali ekspresi yang dikeluarkan oleh seseorang dan menggunakan untuk dapat menentukan apa reaksi yang harus dilakukan pada orang tersebut sesuai dengan ekspresi yang dikeluarkan. Hal tersebut dapat di manfaatkan oleh komputer untuk dapat berinteraksi lebih natural dengan manusia, selain itu dapat dimanfaatkan dalam bidang medis untuk membantu pengobatan pasien. Dalam penelitian ini metode yang digunakan agar dapat mengenali ekspresi wajah manusia adalah Gabor sebagai metode untuk mengekstraksi fitur, Adaboost digunakan untuk menyeleksi fitur, dan neural network merupakan metode untuk mengklasifikasi ekspresi wajah. Untuk pengujian menggunakan dataset JAFFE yang sudah diseleksi secara manual untuk menghilangkan citra yang memiliki ekspresi yang kurang sesuai dengan label. Menggunakan metode – metode tersebut pengenalan ekspresi wajah berhasil mendapatkan akurasi sebesar 52%. Hasil dari penelitian menunjukan bahwa fungsi Gabor lebih berpengaruh terhadap akurasi AdaBoost dibandingkan dengan mengubah parameter θ (theta) dan σ (sigma).
References
Ebenezer, Owusu. ”A neural-AdaBoost based facial expression recognition system,” in Expert Systems with Applications, June 2014, Volume 41, Issue 7
Gurney, K. ”An Introduction to Neural Networks,” London: Routledge. ISBN 1-85728-673-1 (hardback) or ISBN 1-85728-503-4 (paperback), 1997.
Ma, L., and K. Khorasani. ”Facial Expression Recognition Using Constructive Feedforward Neural Networks,” IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 34.3
Rudovic O., Patras I., Pantic M. (2010). “Coupled Gaussian Process Regression for Pose-Invariant Facial Expression Recognition,” in Computer Vision – ECCV 2010. ECCV 2010. Lecture Notes in Computer Science, vol 6312. Springer, Berlin, Heidelberg
Daijin, Kim, dan Sung Jaewon. ”Automated Face Analysis,” in Emerging Technologies and Research, Hershey, PA: Medical Information Science Reference, 2009
Digital image processing., New York, Gonzalez, R. C., & Woods, R. E., 2010
Hastie Trevor, Tibshirani Robert, and Friedman Jerome. ”The elements of statistical learning: data mining, inference and prediction,” New York: Springer-Verlag, 2001, 1(8):371–406
Auer, Peter; Harald Burgsteiner; Wolfgang Maass. ”A learning rule for very simple universal approximators consisting of a single layer of perceptrons. Neural Networks,” 2008.
Lyons, M., S. Akamatsu, M. Kamachi, and J. Gyoba. ”Coding Facial Expressions with Gabor Wavelets,” Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition, 1998
Fawcett, Tom. ”An Introduction to ROC Analysis,” Pattern Recognition Letters, 2006, 27.
Downloads
Published
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.