Text Mining Untuk Klasifikasi Kategori Cerita Pendek Menggunakan Naïve Bayes (NB)

Authors

  • Oman Somantri Politeknik Harapan Bersama Tegal

DOI:

https://doi.org/10.61769/telematika.v12i1.154

Keywords:

Naïve Bayes, Support Vector Machine, cerpen, model, akurasi,

Abstract

Determination of the category of a short story requires a slightly long process, in other way we must read a whole or at least a half of the contents of the short story to know the entire contents from the beginning to the end. These constraints require a solution to overcome by using Naïve Bayes algorithm (NB) to serve as the solution of the existing problems. Naïve Bayes, used as a model, resulted with accuracy of 78.59%. Evaluation was conducted by comparing the level of accuracy produced with other models of Support Vector Machine (SVM). The result of the research show that level of accuracy NB greater than Support Vector Machine (SVM) with accuracy level 64,36%. Based on the results of research conducted can be concluded that Naïve Bayes has a higher level of accuracy than the Support Vector Machine (SVM) for the short story category classification.

Penentuan kategori sebuah cerita pendek memerlukan sebuah proses yang lama. Kita harus membaca secara keseluruhan atau, minimal, setengah dari isi dari cerpen tersebut. Untuk mengetahui seluruh isi konten dari suatu cerpen adalah dengan membaca isi cerpen, mulai dari awal sampai akhir. Kendala ini memerlukan sebuah solusi untuk mengatasinya. Pada penelitian ini diusulkan sebuah model dengan menggunakan algoritme Naïve bayes (NB) untuk dijadikan sebagai solusi dari permasalahan yang ada. Naïve Bayes digunakan sebagai model dengan tingkat akurasi sebesar 78,59%. Evaluasi dilakukan dengan membandingkan tingkat akurasi yang dihasilkan dengan model lain, yaitu Support Vector Machine (SVM). Hasil penelitian memperlihatkan bahwa tingkat akurasi NB lebih besar dibandingkan dengan SVM, yaitu dengan tingkat akurasi 64,36%. Oleh karena itu, didapatkan kesimpulan pada penelitian ini bahwa Naïve Bayes mempunyai tingkat akurasi lebih tinggi dibandingkan dengan Support Vector Machine untuk klasifikasi kategori cerpen.

References

J. Sumardjo dan Saini K.M. Apresiasi Kesusastraan. Jakarta: PT Gramedia, 1998.

J. Chen, H. Huang, S. Tian, & Y. Qu. “Feature selection for text classification with Naïve Bayes.” Expert Systems with Applications, 36, pp. 5432–5435, 2009.

Zhang and F. Gao. “an Improvement to NB for Text Classification.” Procedia Engineering, 15, pp. 2160–2164, 2011.

S. A. Nurul. “Perbandingan Metode Naïve Bayes dan Support Vector Machine Untuk Klasifikasi Emosi pada Teks Bahasa Indonesia”. Skripsi, Fakultas Ilmu Komputer, 2016.

A. Hamzah. “Klasifikasi teks dengan naïve bayes classifier (nbc) untuk pengelompokan teks berita dan abstract akademis,” dalam Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) Periode III, 2012.

N. A. S. Winarsih dan C. Supriyanto, “Evaluation of classification methods for Indonesian text emotion detection,” in International Seminar on Application for Technology of Information and Communication (ISemantic), 2016, pp. 130-133.

N. Jamal, M. Mohd, dan S. A. Noah. “Poetry classification using support vector machines.” Journal of Computer Science, 8(9), pp.1441, 2012.

Downloads

Published

2017-10-03

Issue

Section

Articles