Penerapan Algoritma Genetika pada Optimalisasi Tim Pengerja Musik Gereja
DOI:
https://doi.org/10.61769/telematika.v11i2.148Keywords:
optimalisasi, tim pengerja musik gereja, algoritma genetika, terminasi regenerasi, nilai fitness kromosomAbstract
Gereja memiliki sejumlah pengerja musik yang dijadwalkan setiap pekan secara bergilir pada lokasi yang berbeda-beda. Pengerja terpisah kedalam beberapa kelompok, selain itu pengerja juga memiliki tingkat kemampuan yang berbeda-beda, sehingga solusi optimasi harus bisa menghasilkan susunan tim yang memenuhi ketentuan. Tidak hanya pengerja, setiap lokasi juga memiliki tingkatan karakteristik yang berbeda sehingga sebagian lokasi membutuhkan konfigurasi tim yang khusus. Algoritma genetika digunakan dengan menjadikan pengerja sebagai alel, waktu ibadah dalam setiap lokasi sebagai gen, dan alokasi pengerja pada setiap waktu ibadah dalam setiap lokasi sebagai kromosom. Setiap kromosom mewakili sebuah solusi. Kromosom akan melewati sejumlah tahapan seleksi, persilangan, dan mutasi, sehingga pada akhirnya dihasilkan sejumlah alternatif solusi terbaik. Solusi terbaik dipilih berdasarkan nilai fitness kromosom yang lebih mendekati 0, yang dalam hal ini berarti sangat optimal. Populasi akan mengalami regenerasi sejumlah ukuran generasi yang ditetapkan. Proses regenerasi akan berakhir jika fitness kromosom terbaik tidak mengalami perubahan selama jumlah generasi yang ditetapkan juga. Rata-rata generasi yang dibutuhkan untuk menghasilkan solusi dari 200 pengerja pada 9 lokasi adalah 12, dengan probabilitas persilangan 0,167 dan probabilitas mutasi 0,125.
A church generally employs some music servants whom scheduled every week sequentially to some distributed locations. Each of them is divided into several different groups. They also have different level of expertise, so then the optimization solution should propose a desired team configuration. Every location has their own characteristic level, so it may require special team configuration. Genetic algorithm define servant as allele, service time slot in each location as gene, and servant allocation to each location as chromosome. Each chromosome proposed an alternative solution. Chromosome will be processed through some selection, crossover, and motation steps, so then the best solution will be acquired. Best solution will be chosen from a chromosome that has fitness value near to 0, which means it is the most optimum solution. Population will be regenerated as long as the provided generation size. The regeneration process will be terminated if the best chromosome fitness does not change in a provided generation count. The average required generation to acquire solution from 200 servants in 9 locations is 12, with the crossover probability of 0.167 and mutation probability of 0.125.
References
Sivanandam, Deepa. Introduction to Genetic Algorithms: Evolutionary Algorithm. New York: Springer Berlin Heidelberg. 2008.
Torres Jairo, Franco Edgar, Mayorga Carolina. 2010. “Project Scheduling with Limited Resources Using A Genetic Algorithm”. International Journal of Project Management, vol. 28, pp. 619–628.
Downloads
Published
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.