Model Inferensi Konteks Internet of Things pada Sistem Pertanian Cerdas
DOI:
https://doi.org/10.61769/telematika.v11i2.140Keywords:
sistem pertanian cerdas, konteks, model inferensi konteksAbstract
Sebagian pertanian di dunia sudah mulai memanfaatkan teknologi informasi dan jaringan sensor untuk membantu pengelolaan lahan pertanian. Sistem ini biasa disebut sistem pertanian cerdas. Implementasi sistem pertanian cerdas yang sedikit melibatkan para pemangku kepentingan bidang pertanian membuat implementasi sensor kurang bisa mendukung dalam pembuatan keputusan. Teknik inferensi konteks dapat membantu mengatasi celah permasalahan tersebut. Penelitian ini menyajikan pemodelan inferensi konteks untuk sistem pertanian cerdas yang memperhatikan: (1) jumlah data yang akan diproses, dan (2) pengiriman data dari lahan ke gateway yang tidak selalu aktif. Model inferensi konteks yang diperlukan adalah yang mudah dibuat, mudah dikonfigurasi, dan cepat diproses serta mendukung lintas lingkungan operasi. Penelitian ini menghasilkan model inferensi konteks dan strategi implementasinya untuk penelitian lanjutan.
Most farms have started to use information technology and sensor networks to manage farming field. This system is called smart farming. Smart farming implementation which less involving stakeholders in agriculture field makes the technology not really able to support decision making. Context inference techniques can help with that gap problems. This research presents context inference modeling which considers: (1) the amount of data transfer, and (2) periodic data transmisions. The model designed has to be easy to configure, fast to process, and interoperability. This research had resulted context inference model and its implementation strategy.
References
B. Krisnamurthi, “Analisa Ekonomi: Hari Pangan Sedunia dan Sawit Indonesia,” 2016. [Online]. Available: http://ekonomi.metrotvnews.com/analisa-ekonomi/0kpOGjWb-hari-pangan-sedunia-dan-sawit-indonesia. [Accessed: 27-Oct-2016].
F. Guerrini, “The Future Of Agriculture? Smart Farming,” 2015. [Online]. Available: http://www.forbes.com/sites/federicoguerrini/2015/02/18/the-future-of-agriculture-smart-farming/#338e9d6e337c.
P. A. Julianto, “Pasokan Pangan Dunia Terancam Perubahan Iklim,” 2016. [Online]. Available: http://bisniskeuangan.kompas.com/read/2016/06/07/194422426/pasokan.pangan.dunia.terancam.perubahan.iklim. [Accessed: 27-Oct-2016].
R. van Hooijdonk, “Smart farming: the new agricultural benchmark - Trendwatchter en Futurist Richard van Hooijdonk,” 2015. [Online]. Available: https://en.richardvanhooijdonk.com/smart-farming-new-benchmark/.
A. McEwen and H. Cassimally, Designing the Internet of Things. 2013.
S. Suakanto, V. J. L. Engel, M. Hutagalung, and D. Angela, “Sensor networks data acquisition and task management for decision support of smart farming,” in IEEE International Conference on Information Technology Systems and Innovation (ICITSI), 2016.
M. Ryu, J. Yun, T. Miao, I. Y. Ahn, S. C. Choi, and J. Kim, “Design and implementation of a connected farm for smart farming system,” in SENSORS, 2015 IEEE, 2015, pp. 1–4.
S. Braun, R. Carbon, M. Naab, S. Braun, and R. Carbon, “Piloting a Mobile-App Ecosystem for Smart Farming,” IEEE Softw., vol. 33, no. 4, pp. 9–14, 2016.
S. Suakanto, T. A. Nugroho, S. H. Supangkat, and Suhardi, “Smart sensor untuk pertanian,” in Prosiding Konferensi e-Indonesia Initiatives (eII) Forum 2013, 2013.
C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “CA4IOT: Context awareness for Internet of Things,” Proc. - 2012 IEEE Int. Conf. Green Comput. Commun. GreenCom 2012, Conf. Internet Things, iThings 2012 Conf. Cyber, Phys. Soc. Comput. CPSCom 2012, pp. 775–782, 2012.
V. J. L. Engel and S. H. Supangkat, “Context-Aware Inference Model for Cold-Chain Logistics Monitoring,” in 2014 International Conference on ICT For Smart Society (ICISS), 2014, pp. 192–196.
D. Ferrari and M. Gerla, Context-Aware Systems and Applications.
C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context Aware Computing for The Internet of Things: A Survey,” pp. 1–41, 2013.
C. Perera, A. Zaslavsky, P. Christen, M. Compton, and D. Georgakopoulos, “Context-aware sensor search, selection and ranking model for internet of things middleware,” Proc. - IEEE Int. Conf. Mob. Data Manag., vol. 1, pp. 314–322, 2013.
A. Kalmar, R. Vida, and M. Maliosz, “Context-aware addressing in the Internet of Things using Bloom filters,” 4th IEEE Int. Conf. Cogn. Infocommunications, CogInfoCom 2013 - Proc., pp. 487–492, 2013.
L. Carvalho, R. Campos, and M. Ricardo, “Context-aware low-energy Wi-Fi sensor networks for e-health,” 2013 IEEE 15th Int. Conf. e-Health Networking, Appl. Serv. Heal. 2013, no. Healthcom, pp. 361–365, 2013.
N. Wang, N. Zhang, and M. Wang, “Wireless sensors in agriculture and food industry - Recent development and future perspective,” Comput. Electron. Agric., vol. 50, no. 1, pp. 1–14, 2006.
Y. Deng, W. Wu, and T. Yu, “Research on current development and development pattern of China’s agricultural cold chain logistics,” 2012 Int. Conf. Manag. Sci. Eng. 19th Annu. Conf. Proc., pp. 526–532, 2012.
W. Dargie and C. Poellabauer, Fundamentals of Wireless Sensor Networks: Theory and Practice. 2010.
T. Sánchez López, D. C. Ranasinghe, M. Harrison, and D. McFarlane, “Adding sense to the Internet of Things: An architecture framework for Smart Object systems,” Pers. Ubiquitous Comput., vol. 16, no. 3, pp. 291–308, 2012.
A. McBratney, B. Whelan, T. Ancev, and J. Bouma, “Future Directions of Precision Agriculture,” Precis. Agric., vol. 6, no. July 2004, pp. 7–23, 2005.
A. K. Dey and G. D. Abowd, “Towards a Better Understanding of Context and Context-Awareness,” Comput. Syst., vol. 40, no. 3, pp. 304–307, 1999.
K. Park, C. Byun, J. Yun, J. Chang, and Y. Kim, “Context-aware inference (CAI) model on smart computing environment,” 2012 Int. Conf. Inf. Sci. Appl. ICISA 2012, 2012.
Y. Wang and K. Cao, “Context-aware complex event processing for event cloud in internet of things,” 2012 Int. Conf. Wirel. Commun. Signal Process. WCSP 2012, 2012.
D. Salber, A. K. Dey, and G. D. Abowd, “The Context Toolkit : Aiding the Development of Context-Enabled,” CHI ’99 Proc. SIGCHI Conf. Hum. Factors Comput. Syst., pp. 434–441, 1999.
FAO, “Agriculture to 2050 – the challenges ahead,” FAO News. [Online]. Available: http://www.fao.org/news/story/en/item/36193/icode/.
D. Guan, W. Yuan, S. Lee, and Y. K. Lee, “Context selection and reasoning in ubiquitous computing,” Proc. 2007 Int. Conf. Intell. Pervasive Comput. IPC 2007, pp. 184–187, 2007.
M. Compton, P. Barnaghi, L. Bermudez, R. García-Castro, O. Corcho, S. Cox, J. Graybeal, M. Hauswirth, C. Henson, A. Herzog, V. Huang, K. Janowicz, W. D. Kelsey, D. Le Phuoc, L. Lefort, M. Leggieri, H. Neuhaus, A. Nikolov, K. Page, A. Passant, A. Sheth, and K. Taylor, “The SSN ontology of the W3C semantic sensor network incubator group,” J. Web Semant., vol. 17, pp. 25–32, 2012.
V. Q. Son, B. Wenning, A. Timm-giel, and C. Görg, “A Model of Wireless Sensor Networks using Context- Awareness in Logistic Applications,” pp. 2–7, 2009.
Downloads
Published
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.