Perbandingan Penyelesaian Persamaan Diferensial Biasa Menggunakan Metode Backpropagation, Euler, Heun, dan Runge-Kutta Orde 4
DOI:
https://doi.org/10.61769/telematika.v11i1.135Keywords:
persamaan diferensial, artificial neural network, backpropagation, metode numerik, chaos, Euclidean, grafik garisAbstract
Persamaan diferensial banyak digunakan sebagai model matematika atau dalam bidang sains lainnya. Dalam persamaan tersebut dibutuhkan tingkat akurasi yang sangat tinggi sehingga diciptakan beberapa metode untuk menyelesaikan persamaan diferensial itu. Salah satu metode yang digunakan adalah Metode Numerik dan Metode Artificial Neural Network (ANN). Ada 4 metode yang terlibat dalam penelitian ini, yaitu Metode Euler, Heun, Runge-Kutta Orde 4 yang termasuk pada metode Numerik, dan Backpropagation Neural Network (BPNN) yang termasuk dalam Metode ANN. Penelitian ini untuk membuktikan bahwa dalam menyelesaikan persamaan diferensial penggunaan Metode BPNN lebih baik daripada Metode Numerik. Hal ini dibuktikan dengan hasil Euclidean Distance dari BPNN lebih baik dibandingkan metode yang lain. Hasil penyelesaian akan terlihat lebih jelas ketika persamaan diferensial tersebut mengandung unsur chaos. Jika dilihat dari grafik penyelesaiannya, BPNN memiliki grafik yang mirip dengan grafik dari solusi sejatinya. Berbeda dengan penyelesaian yang menggunakan Metode Numerik, hasil grafik garis yang diperoleh tidak memiliki kemiripan dengan solusi sejatinya.
Differential equation are widely used as a model in the mathematics model or other science. In this equation takes a very high level of accuracy that was created several methods to solve the differential equations. One of the method used is Numerical Method and Artificial Neural Network (ANN). There are four methods involved in this study, Euler Method, Heun, and Runge-Kutta Order 4 are included in Numerical Methods, and Backpropagation Neural Network (BPNN) which included in ANN Method. This research is to prove that in solving differential equations using BPNN Method is better than Numerical Method. This is evidenced by the result of Euclidean Distance from BPNN is better than other methods. The result of the solving will be seen more clearly when the differential equation contains elements of chaos. If seen from the graph, BPNN have a graph similar to the graph of the Analitic Solution. Contrast to the solving using Numerical Methods, the line graph has no resemblance to the Analitic Solution.
References
___________.Artificial Neural Network. (online).(www.cs.sunysb.edu diakses tanggal 14 November 2012).
___________. Analisis Simulasi Gejala Chaos Pada Gerak Pendulum Nonlinier.(online pdf).(http://repository.usu.ac.id diakses tanggal 3 April 2013).
Chapra, Steven C. (1988). Numerical Methods for Engineers With Personal Computer Application – 2nd edition. Mcgraw Hill College.
Lagaris, Isaac Elias, Aristidis Likas, Dimitrios I. Fotiadis. Artificial Neural Network for Solving Ordinary and Partial Differential Equations. (1998). www.ieee.org (diakses tanggal 12 Oktober 2012).
Munir, Rinaldi. (2010). Metode Numerik Revisi ke Tiga. Informatika.
Spiegel, Murray R, Larry J. Stephen. (2011). Schaums Outline of Statistics, Fourth Edition. Mcgraw Hill Collage.
Sumbangan, Baja. (2012). Perencanaan Tata Guna Lahan Dalam Pengembangan Wilayah Pendekatan Spasial dan Aplikasinya. Andi.
Downloads
Published
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.