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____________________________________________________________________________________ 

Abstract— Deep learning methods in computer vision play a crucial role in object localization using camera-

based sensors, with Convolutional Neural Networks serving as the dominant approach for object detection. 

However, many existing models incur high computational costs due to deep architectures and complex operations, 

limiting their use for real-time deployment on low-cost, resource-constrained devices. The YOLOv12 architecture 

offers lightweight variants to improve computational efficiency. This study evaluates the trade-off between 

efficiency and detection performance by comparing model variants using the number of parameters, floating-

point operations, and inference speed, while detection accuracy is measured using mean average precision. The 

results assess the suitability of lightweight models for real-time deployment in resource-constrained environments 

such as underwater monitoring and conservation. Experimental results on the Real-World Underwater Object 

Detection dataset demonstrate that YOLOv12-nano achieves 5.7% lower accuracy compared to YOLOv12-medium 

but requires only 2.57 million parameters and 6.5 GFLOPs, significantly less than YOLOv12-medium with 20.1 

million parameters and 67.8 GFLOPs. Moreover, YOLOv12-small requires 9.26 million parameters and 21.5 

GFLOPs, positioning it between nano and medium in terms of complexity while still maintaining competitive 

accuracy. In the inference process, YOLOv12-nano achieves 16.48 FPS on a 12th Gen Intel(R) Core (TM) i5-

12450HX CPU. In comparison, YOLOv12-small runs at 6.28 FPS, while YOLOv12-medium runs at 2.36 FPS. 

These results indicate that YOLOv12-nano is the most suitable variant for real-time deployment on CPU-based 

platforms. 
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Abstract— Metode deep learning dalam computer vision berperan penting dalam pelokalan objek 

menggunakan sensor berbasis kamera dengan Convolutional Neural Networks sebagai pendekatan utama 

dalam deteksi objek. Namun, banyak model yang ada memiliki biaya komputasi yang tinggi akibat arsitektur 

yang dalam dan operasi yang kompleks sehingga membatasi penerapannya untuk kebutuhan waktu nyata 

pada perangkat berbiaya rendah dan dengan sumber daya terbatas. Arsitektur YOLOv12 menawarkan 

beberapa varian ringan yang dirancang untuk meningkatkan efisiensi komputasi. Penelitian ini mengevaluasi 

keseimbangan antara efisiensi dan kinerja deteksi dengan membandingkan berbagai varian model 

berdasarkan jumlah parameter, operasi floating-point, dan kecepatan inferensi, serta mengukur akurasi 

menggunakan mean average precision. Hasil evaluasi ini digunakan untuk menilai kesesuaian model yang 

ringan dalam penerapan waktu nyata pada lingkungan dengan sumber daya terbatas, seperti pemantauan 

dan konservasi bawah air. Hasil eksperimen pada dataset real-world underwater object detection menunjukkan 

bahwa YOLOv12-nano memiliki akurasi 5,7% lebih rendah dibandingkan YOLOv12-medium, namun hanya 

membutuhkan 2,57 juta parameter dan 6,5 GFLOPs, jauh lebih kecil dibandingkan YOLOv12-medium yang 

memiliki 20,1 juta parameter dan 67,8 GFLOPs. Selain itu, YOLOv12-small membutuhkan 9,26 juta 
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parameter dan 21,5 GFLOPs sehingga berada di antara varian nano dan medium dari sisi kompleksitas, 

dengan akurasi yang tetap kompetitif. Pada proses inferensi, YOLOv12-nano mencapai kecepatan 16,48 FPS 

pada CPU Intel(R) Core (TM) i5-12450HX generasi ke-12. Sebagai perbandingan, YOLOv12-small berjalan 

pada 6,28 FPS, sedangkan YOLOv12-medium mencapai 2,36 FPS. Hasil ini menunjukkan bahwa YOLOv12-

nano merupakan varian yang paling sesuai untuk penerapan waktu nyata pada platform berbasis CPU. 

 

Kata kunci— bawah laut, deteksi objek, convolutional neural network, YOLOv12 ringan, model efisien 

____________________________________________________________________________________ 

I. INTRODUCTION 

Traditional conservation methods involve high operational costs and pose risks to human safety. In 

addition, these challenges can be overcome through an automated system capable of detecting and locating 

objects underwater [1], [2].  One of the widely known methods for localization tasks is the convolutional 

neural network (CNN) [3]. However, achieving high detection performance often requires CNN methods 

to employ deeper architectures with many layers and convolutional filters, which significantly increases 

computational cost. This complexity limits the feasibility of such models for real-time deployment on low-

cost and resource-constrained platforms. A comparative experimental study is essential to determine which 

model variant offers efficient deployment across different devices while maintaining competitive 

performance. Variations in lighting due to depth and water turbidity cause uneven illumination, while 

suspended particles scatter light, leading to blurring, color distortion, and reduced contrast [4]. Therefore, 

it is essential to evaluate deep learning architectures that can effectively handle complex underwater visual 

characteristics while maintaining efficient, reliable, real-time performance. 

A previous study proposes a lightweight underwater object detection model based on a modified 

YOLOv8-nano architecture, called RDL-YOLO [5]. The model uses the same dataset for training and 

performance evaluation. However, the comparison focuses solely on model size and computational 

complexity, reporting only limited metrics, such as the number of parameters and floating-point operations. 

RDL-YOLO contains 2.43 million parameters and requires 6.9 GFLOPs, which are higher than those of 

YOLOv12-nano. Furthermore, the lack of an inference speed evaluation limits the assessment of its 

suitability for real-time deployment. Another study [6] introduces EAST-YOLO, which adopts the 

YOLO11-nano architecture. The model contains 2.6 million parameters and requires 6.5 GFLOPs, which 

are comparable to YOLOv12-nano. The study evaluates efficiency and detection performance using metrics 

such as GFLOPs and mean average precision. However, the analysis is limited to the nano variant, 

preventing a comprehensive comparison across different model scales, such as small and medium variants. 

Subsequently, study [7] proposed a lightweight detection model named YOLO-Fast. However, the 

comparison used only the small-scale variant, YOLOv8s, as the baseline. This limitation leaves a research 

gap in evaluating nano-scale variants for efficiency and real-time deployment. 

CNN architectures rely on large numbers of parameters and high computational complexity, which 

result in high computational costs [8]. The work [9] proposes a two-stage underwater object detector based 

on a region-based convolutional neural network (R-CNN) and a swin transformer to improve detection 

performance. However, it increases computational complexity due to the use of self-attention, achieving 

only 12.8 FPS, which is slower than YOLO architectures. Furthermore, the work in [10] introduces multiple 

convolutional blocks to enhance the performance. It employs deformable large kernel attention (D-LKA), 

which relies on large kernel operations, and incorporates separate and enhancement attention modules 

(SEAM), both of which increase computational demands. 

In addition, underwater imagery suffers from light scattering, color distortion, and low visibility, 

which degrade image quality [11], [12], [13]. Therefore, robust models with sufficient convolutional depth 

are required to extract meaningful features from complex data. Balancing lightweight design with strong 
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feature representation is crucial to achieve both accuracy and real-time performance in underwater detection 

tasks [14]. YOLOv12 is a CNN designed for real-time object detection [15]. It offers nano, small, and 

medium model sizes. The nano model is the fastest and most efficient for real-time use. The small and 

medium models are more accurate but need more computation. Deeper models produce better features but 

slow down processing, which makes them less suitable for real-time tasks.  This work addresses the limited 

investigation of how different YOLO model scales influence detection accuracy, computational cost, and 

inference speed [5]. Existing studies focus only on nano-scale models [6]. Other works rely on traditional 

architectures [9], resulting in an incomplete understanding of scalability trade-offs. Furthermore, this study 

introduces a new underwater object detection framework based on the YOLOv12 architecture, trained and 

evaluated on the real-world underwater object detection dataset. The comparative analysis aims to identify 

which variant achieves the optimal balance between detection performance, inference speed, and 

computational efficiency across various devices. This study also compared the small and medium variants 

of YOLOv12 to evaluate trade-offs in computational cost and detection performance. The study seeks to 

determine the most suitable configuration for real-time applications in resource-constrained environments, 

such as edge-based marine monitoring and mobile conservation systems. 

II. METHODOLOGY 

A. YOLOv12 

The You Only Look Once (YOLO) series has become one of the most prominent frameworks in real-time 

object detection due to its capability to achieve a strong trade-off between accuracy and computational 

efficiency. As shown in Figure 1, the YOLOv12 network comprises several area attentions with C2f (A2C2f) 

and cross stage partial with C3k (C3K2) modules to optimize feature extraction, enhance multi-scale feature 

representation, and improve detection precision through a single-stage detection approach. Unlike 

traditional two-stage methods that separate region proposal and classification steps, YOLOv12 integrates 

these steps into a unified pipeline, resulting in faster, more streamlined inference. This design allows the 

model to operate effectively in real-time applications and on devices with limited computational resources. 

Additionally, YOLOv12 incorporates refined backbone and neck structures to strengthen feature fusion and 

localization accuracy while preserving lightweight computation. 

YOLOv12 includes five variants: nano, small, medium, large, and extra-large, each balancing 

accuracy and efficiency for different applications. This study focuses on lightweight nano-, small-, and 

medium-sized models optimized for real-time performance. The nano version with 2.6 million parameters 

and 6.7 GFLOPs offers high speed on limited hardware, the small version with 9.3 million parameters and 

21.7 GFLOPs provides higher precision, and the medium version with 20.2 million parameters and 68.1 

GFLOPs achieves a balanced trade-off between accuracy and efficiency.  

B. Backbone 

The backbone in YOLOv12 serves as the main feature extractor, processing input images to learn 

useful visual patterns. It uses the A2C2f and C3K2 modules to improve feature quality and efficiency. With 

a pyramid structure, the backbone can capture features at multiple scales, enabling accurate detection of 

both small and large objects with minimal computational cost. 

1)  A2C2f: The A2C2f module in YOLOv12 improves feature extraction by combining area attention 

with efficient convolution. As shown in Figure 2, it starts with a 1×1 convolution to reduce the channel size 

and then splits into two paths. One path acts as a shortcut, while the other applies either area attention or 

the C3K block. Area Attention captures global context by modelling relationships between feature regions. 

The C3K block is a modified C3 structure that utilizes flexible kernel sizes to better capture spatial  
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Figure 1 The YOLOv12-nano architecture consists of a backbone (A2C2f, C3K2) for feature extraction, a neck for 

feature fusion, and a detection head predicting objects on three layers (P3, P4, P5) [15] 

 

information, as shown in Figure 3. The outputs are then processed by a feed-forward layer with two 1×1 

convolutions to refine the features. 

2)  C3k2: To address underwater challenges such as blur and low visibility, effective feature extraction 

is required. As shown in Figure 4, the C3K2 module acts as an efficient feature extractor. It is a lightweight 

variant of the CSP bottleneck, similar to the C2f structure but using the C3K design. The module starts with 

a 1×1 convolution to adjust the number of channels. Half of the channels are used for feature extraction, 

while the remaining channels are preserved as identity connections to improve efficiency. C3K2 supports 

two modes: C3K, with three convolutions and flexible kernel sizes, and C2f, with two 3×3 convolutions. 

The outputs are then concatenated and processed by another 1×1 convolution to enhance channel interaction. 

This compact structure provides strong feature representations for underwater detection. 

C. Neck 

The neck serves as the bridge between the backbone and detection head, merging multi-scale feature 

maps to produce more discriminative representations. YOLOv12 employs a path aggregation network 

(PAN) structure to enable both top-down and bottom-up feature fusion, enhancing context awareness across 

layers [16]. Convolution and C3K2 modules are used to improve feature integration while maintaining 

computational efficiency. 
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D. Head 

YOLOv12 uses an anchor-free detection head derived from YOLOv8, separating objectness, 

classification, and bounding-box regression for enhanced accuracy and inference stability. The head 

consists of two parallel branches with 3×3 and 1×1 convolutions, producing predictions at three scales 

(80×80, 40×40, and 20×20) to detect small, medium, and large objects. The optimization process uses 

Distribution Focal Loss (DFL) and Complete Intersection over Union (CIoU) loss for bounding-box 

regression and Binary Cross-Entropy (BCE) for classification [17], [18], [19]. 

 

 𝑇𝑜𝑡𝑎𝑙𝑙𝑜𝑠𝑠 = 𝜆𝐶𝐼𝑜𝑈𝐿𝐶𝐼𝑜𝑈 + 𝜆𝐷𝐹𝐿𝐿𝐷𝐹𝐿 + 𝜆𝐶𝑙𝑠𝐿𝐶𝑙𝑠.  (1) 

 

 

Figure 2 The A2C2f module uses area attention for global feature relations (True) and C3K block for adaptive spatial 

extraction (False) [15]. 

 

 

Figure 3 The C3K module structure in YOLOv12, which works together with thebBottleneck module to extract 

feature information efficiently [15]. 
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Figure 4 The C3K2 module uses C3K blocks for multi-scale feature aggregation (True) and Bottleneck blocks for 

efficient local extraction (False) [15]. 

 

The total loss comprises of three components. The CIoU loss 𝐿𝐶𝐼𝑜𝑈  measures the discrepancy 

between the predicted bounding box and the ground-truth box by considering overlap, distance, and aspect 

ratio. The distribution loss 𝐿𝐷𝐹𝐿  applies Distribution Focal Loss to provide smooth supervision over 

bounding box regression. In addition, the classification loss 𝐿𝐶𝑙𝑠 employs Binary Cross-Entropy (BCE) to 

penalize incorrect class predictions. 

E. Comparison Methods 

In this work, efficiency is measured by the number of parameters and giga floating point operations 

(GFLOPs) to represent computational complexity. Mean average precision (mAP) quantifies the accuracy 

of localization and classification. Inference speed uses frames per second (fps). These metrics are widely 

used in computer vision to analyze the trade-off between accuracy and efficiency. The number of 

parameters depends on the kernel size, the number of input channels, and the number of output channels. 

This relationship is expressed as follows: 

 

 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = (𝐾ℎ × 𝐾𝑤 × 𝐶𝑖𝑛 + 1) × 𝐶𝑜𝑢𝑡.  (2) 

 

The number of parameters is calculated based on the kernel size (representing the kernel height and 

width), the number of input channels, and a bias term. The total parameter count is obtained by multiplying 

these values by the number of output channels. In addition, GFLOPs is used to represent computational 

cost by estimating the number of floating-point operations. This process is expressed as follows: 

 

 𝐹𝐿𝑂𝑃𝑠 = ℎ × 𝑤 × 𝐶𝑜𝑢𝑡 × (𝑘 × 𝑘 × 𝐶𝑖𝑛).  (3) 
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The computational cost is calculated by multiplying the total number of output feature map elements 

(ℎ ×𝑤 × 𝐶𝑜𝑢𝑡) by the total number of kernel weights ((𝑘 × 𝑘 × 𝐶𝑖𝑛). This metric represents the number of 

floating-point operations required to process the feature maps and is commonly used to estimate 

computational complexity [20]. In addition, mAP is used to evaluate detection performance. This metric is 

widely adopted in object detection with thresholds of 50% and 50%-95%, where higher values indicate 

more precise predictions. This process is defined as follows: 

 

 𝑚𝐴𝑃 =
1

𝑘
∑ 𝐴𝑃𝑖
𝑘
𝑖 .  (4) 

 

Mean average precision evaluates detection performance by computing predictions using intersection 

over union (IoU) thresholds of 50% and 50%-95%. The average precision for each class is first calculated, 

and the final mAP value is obtained by averaging across all classes. This metric enables accurate evaluation 

of positive sample predictions and overall detection quality. 

F. Dataset 

In this study, the real-world underwater object detection (RUOD) [21] dataset is used as the 

benchmark for model evaluation, as shown in Figure 5. RUOD is a large-scale dataset designed to overcome 

the limitations of previous underwater datasets, which have limited object types and scene diversity. It 

contains 14,000 high-resolution images and 74,903 annotated objects across 10 aquatic categories, 

including fish, diver, starfish, corals, turtle, echinus, holothurian, scallop, cuttlefish, and jellyfish. Each 

image includes bounding box annotations and class labels. The dataset comprises 9,800 training images 

and 4,200 test images, covering diverse underwater environments collected from public sources. RUOD 

features a range of real-world challenges, including blur effects, color casts, light interference, and complex 

marine conditions, making it a comprehensive and reliable benchmark for evaluating underwater object 

detection performance. 

G. Implementations Setup 

As shown in Table I, training is performed on the Kaggle platform using an NVIDIA P100 GPU. The 

model is trained for 150 epochs with a batch size of 16, and the input resolution is set to 640×640 pixels to 

retain spatial detail. Stochastic gradient descent with a learning rate of 0.01 is used to ensure stable 

parameter updates. This configuration provides sufficient computational capacity for effective learning 

while helping prevent overfitting. For inference, Table I shows the model runs on Ubuntu 21 with an Intel 

i5-12450HX CPU using PyTorch 2.0.1, with input images of 640 × 640 pixels as in training. This setup 

enables a realistic evaluation of computational efficiency and inference speed on mid-range, GPU-free 

devices. 

III. RESULTS AND DISCUSSIONS 

A. Evaluation on Datasets 

To evaluate model performance, several key metrics are employed. The number of trainable 

parameters determines the model's size and memory requirements. Giga floating-point operations (GFLOPs) 

indicate the computational complexity of a single forward pass and reflect the overall computation cost. 

Detection accuracy is reported using mAP50 and mAP50:95. In addition, frames per second (fps) represent 

the inference speed and indicate how many images the model processes per second during inference. These  
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Figure 5 Sample images from the RUOD dataset showing diverse underwater scenes with various marine species, 

divers, and environmental conditions such as haze, color distortion, and light interference. 

 

metrics provide a comprehensive analysis of both detection performance and computational efficiency. As 

shown in Table I, YOLO12n and YOLO11n achieve the highest detection accuracy. YOLO12n obtains an 

mAP50 of 0.833 and mAP50:95 of 0.590, while YOLO11n slightly improves performance with 0.834 and 

0.591, respectively. Despite having similar parameter sizes (approximately 2.6M), YOLO11n demonstrates 

marginally better accuracy. This indicates that the structural refinements in YOLO11n enhance feature 

extraction without increasing computational complexity. In contrast, YOLO-Fast [7] has the smallest 

parameter count (2.34M) and the lowest computational cost (6.5 GFLOPs), but its mAP50:95 score of 0.546 

is significantly lower. 

The result indicates that although YOLO-Fast is suitable for highly resource-constrained 

environments, it compromises detection accuracy due to its limited representational capacity. Models such 

as YOLOv10n [22], YOLOv8n, and YOLOv6n provide moderate performance, with mAP50 scores ranging 

from 0.812 to 0.830 and parameter sizes between 2.7M and 4.2M, offering a balanced trade-off between 

accuracy and efficiency. However, they still do not surpass the performance of newer architectures like 

YOLO11n and YOLO12n. On the higher end, YOLO12s and YOLO12m achieve the strongest results, with 

YOLO12s reaching an mAP50 of 0.860 and YOLO12m achieving the highest accuracy of 0.871, though 

these gains come at substantially higher computational cost due to their larger parameter sizes. 

Notably, YOLOv12n provides an advantageous balance between performance and efficiency. With 

approximately 2.57M parameters and 6.5 GFLOPs, it achieves competitive detection accuracy while 

maintaining a lightweight structure, making it well-suited for real-time applications and deployment on 

devices with limited hardware resources. As illustrated in Figure 6, both YOLOv12-nano and YOLOv12-

small demonstrate effective detection performance across various underwater environments containing fish, 

holothurians, echinus, starfish, and divers. However, noticeable differences emerge in detection precision 

and robustness. 

Based on Figure 6, the YOLOv12-nano model in (a) is able to detect the main objects but generates fewer 

bounding boxes and occasionally misses small or partially occluded targets. This behaviour is expected, as 

nano-scale models are optimized for lightweight computation rather than extensive feature representation. 

In comparison, the YOLOv12-small model in (b) provides more complete detection coverage. Selecting 

the most efficient YOLOv12 variant prioritizes inference speed and computational cost while maintaining 

competitive detection accuracy. YOLOv12-nano uses 2.5 million parameters and 6.5 GFLOPs, achieving 

an inference speed of 16.48 FPS. In comparison, YOLOv12-small increases the parameter count by 268% 

to 9.2 million and the computational cost by 231% to 21.5 GFLOPs, resulting in a 61.89% reduction in 

inference speed to 6.28 FPS. Although YOLOv12-small achieves a higher mAP, its higher computational 

demand limits its suitability for low-CPU and edge devices. As shown in Figure 6, YOLOv12-nano 
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provides competitive detection performance compared to the YOLOv12-small variant. Therefore, inference 

speed and computational efficiency are the primary criteria in selecting the YOLOv12-nano variant. 

B. Runtime Efficiency 

To evaluate runtime efficiency, inference performance was analyzed across several YOLO variants 

under a CPU-based setup. As shown in Table I, lower parameter counts and GFLOPs do not always 

guarantee higher FPS, indicating that model speed is influenced not only by computational complexity but 

also by algorithmic optimization and memory access efficiency. For example, YOLOv10n and YOLO11n 

achieve the highest FPS values (18.37 and 18.59, respectively) despite having similar or slightly higher 

parameter counts compared to lighter models like YOLOv12n and YOLO-FAST. This demonstrates that 

architectural design and efficient memory utilization play a more critical role in determining real-time 

performance than raw model size alone. 

 

TABLE I 

COMPARISON OF YOLO VARIANTS USING MODEL SIZE, COMPUTATIONAL COST, ACCURACY, AND SPEED 

Models mAP50 mAP50:95 Parameters GFLOPs FPS 

YOLO-FAST 0.807 0.546 2,340,366 6.5 15.32 

YOLOv10n 0.825 0.581 2,710,940 8.4 18.37 

YOLOv8n 0.83 0.583 3,012,798 8.2 15.96 

YOLOv6n 0.812 0.568 4,239,134 11.9 13.84 

YOLOv12s 0.86 0.628 9,257,006 21.5 6.28 

YOLOv12m 0.871 0.647 20,145,198 67.8 2.36 

YOLOv12n-Turbo 0.828 0.585 2,521,614 6.0 16.49 

YOLO11n 0.834 0.591 2,591,790 6.5 18.59 

YOLOv12n 0.833 0.59 2,569,998 6.5 16.48 

 

 

Figure 6 Qualitative detection results on representative samples from the RUOD dataset. (a) Detection generated by 

the YOLOv12-nano model. (b) Detection generated by the YOLOv12-small model. 
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YOLOv12n and YOLO11n both maintain competitive speeds of 16.48 FPS and 18.59 FPS, 

respectively, while keeping computational cost low at 6.5 GFLOPs, making them suitable for resource-

constrained deployment. In contrast, larger models such as YOLOv12s and YOLOv12m show significantly 

reduced FPS with 6.28 and 2.36, respectively. These results highlight that YOLOv12n achieves a favorable 

balance between inference speed and detection performance, making it well-suited for real-time 

applications on mid-range hardware. 

IV. CONCLUSIONS 

This study evaluates lightweight YOLOv12 variants, aiming to achieve an optimal balance between 

detection accuracy and computational efficiency for real-time object detection. YOLOv12-nano achieves 

16.48 FPS on CPU inference while maintaining competitive detection accuracy with an mAP50:95 of 0.590, 

utilizing only 2.57 million parameters and 6.5 GFLOPs. These results highlight its suitability for edge-

based or low-power systems, such as underwater monitoring platforms, where real-time processing and 

energy efficiency are critical. Meanwhile, the small and medium variants offer higher accuracy but require 

greater computational resources, making them more appropriate for GPU-based environments. This 

efficiency result highlights the potential to further improve detection performance by integrating 

enhancement modules. 
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