
Jurnal Telematika vol. 20 no. 2 2025 e-ISSN: 2579-3772
 doi: 10.61769/telematika.v20i2.799

127

Comparative Study of Lightweight YOLOv12

Models for Real-Time Underwater Object Detection
Hebron Prasetya1, Revin R. Balo2, Tasya Tumbal3, Alwin M. Sambul4, Muhamad Dwisnanto Putro5,*

1,2,3,4,5Master Program of Informatics, Postgraduate Program, Sam Ratulangi University

Jl. Kampus Unsrat Bahu, Manado, Sulawesi Utara, Indonesia
1hebronprasetya111@student.unsrat.ac.id

2revinbalo111@student.unsrat.ac.id

3tasyatumbal111@student.unsrat.ac.id

4asambul@gmail.com

*Correspondence: 5dwisnantoputro@unsrat.ac.id

__

Abstract— Deep learning methods in computer vision play a crucial role in object localization using camera-

based sensors, with Convolutional Neural Networks serving as the dominant approach for object detection.

However, many existing models incur high computational costs due to deep architectures and complex operations,

limiting their use for real-time deployment on low-cost, resource-constrained devices. The YOLOv12 architecture

offers lightweight variants to improve computational efficiency. This study evaluates the trade-off between

efficiency and detection performance by comparing model variants using the number of parameters, floating-

point operations, and inference speed, while detection accuracy is measured using mean average precision. The

results assess the suitability of lightweight models for real-time deployment in resource-constrained environments

such as underwater monitoring and conservation. Experimental results on the Real-World Underwater Object

Detection dataset demonstrate that YOLOv12-nano achieves 5.7% lower accuracy compared to YOLOv12-medium

but requires only 2.57 million parameters and 6.5 GFLOPs, significantly less than YOLOv12-medium with 20.1

million parameters and 67.8 GFLOPs. Moreover, YOLOv12-small requires 9.26 million parameters and 21.5

GFLOPs, positioning it between nano and medium in terms of complexity while still maintaining competitive

accuracy. In the inference process, YOLOv12-nano achieves 16.48 FPS on a 12th Gen Intel(R) Core (TM) i5-

12450HX CPU. In comparison, YOLOv12-small runs at 6.28 FPS, while YOLOv12-medium runs at 2.36 FPS.

These results indicate that YOLOv12-nano is the most suitable variant for real-time deployment on CPU-based

platforms.

Keywords— underwater, object detection, convolutional neural network, lightweight YOLOv12, efficient model

Abstract— Metode deep learning dalam computer vision berperan penting dalam pelokalan objek

menggunakan sensor berbasis kamera dengan Convolutional Neural Networks sebagai pendekatan utama

dalam deteksi objek. Namun, banyak model yang ada memiliki biaya komputasi yang tinggi akibat arsitektur

yang dalam dan operasi yang kompleks sehingga membatasi penerapannya untuk kebutuhan waktu nyata

pada perangkat berbiaya rendah dan dengan sumber daya terbatas. Arsitektur YOLOv12 menawarkan

beberapa varian ringan yang dirancang untuk meningkatkan efisiensi komputasi. Penelitian ini mengevaluasi

keseimbangan antara efisiensi dan kinerja deteksi dengan membandingkan berbagai varian model

berdasarkan jumlah parameter, operasi floating-point, dan kecepatan inferensi, serta mengukur akurasi

menggunakan mean average precision. Hasil evaluasi ini digunakan untuk menilai kesesuaian model yang

ringan dalam penerapan waktu nyata pada lingkungan dengan sumber daya terbatas, seperti pemantauan

dan konservasi bawah air. Hasil eksperimen pada dataset real-world underwater object detection menunjukkan

bahwa YOLOv12-nano memiliki akurasi 5,7% lebih rendah dibandingkan YOLOv12-medium, namun hanya

membutuhkan 2,57 juta parameter dan 6,5 GFLOPs, jauh lebih kecil dibandingkan YOLOv12-medium yang

memiliki 20,1 juta parameter dan 67,8 GFLOPs. Selain itu, YOLOv12-small membutuhkan 9,26 juta

Comparative Study of Lightweight YOLOv12 Models for Real-Time Underwater Object Detection

128

parameter dan 21,5 GFLOPs sehingga berada di antara varian nano dan medium dari sisi kompleksitas,

dengan akurasi yang tetap kompetitif. Pada proses inferensi, YOLOv12-nano mencapai kecepatan 16,48 FPS

pada CPU Intel(R) Core (TM) i5-12450HX generasi ke-12. Sebagai perbandingan, YOLOv12-small berjalan

pada 6,28 FPS, sedangkan YOLOv12-medium mencapai 2,36 FPS. Hasil ini menunjukkan bahwa YOLOv12-

nano merupakan varian yang paling sesuai untuk penerapan waktu nyata pada platform berbasis CPU.

Kata kunci— bawah laut, deteksi objek, convolutional neural network, YOLOv12 ringan, model efisien

__

I. INTRODUCTION

Traditional conservation methods involve high operational costs and pose risks to human safety. In

addition, these challenges can be overcome through an automated system capable of detecting and locating

objects underwater [1], [2]. One of the widely known methods for localization tasks is the convolutional

neural network (CNN) [3]. However, achieving high detection performance often requires CNN methods

to employ deeper architectures with many layers and convolutional filters, which significantly increases

computational cost. This complexity limits the feasibility of such models for real-time deployment on low-

cost and resource-constrained platforms. A comparative experimental study is essential to determine which

model variant offers efficient deployment across different devices while maintaining competitive

performance. Variations in lighting due to depth and water turbidity cause uneven illumination, while

suspended particles scatter light, leading to blurring, color distortion, and reduced contrast [4]. Therefore,

it is essential to evaluate deep learning architectures that can effectively handle complex underwater visual

characteristics while maintaining efficient, reliable, real-time performance.

A previous study proposes a lightweight underwater object detection model based on a modified

YOLOv8-nano architecture, called RDL-YOLO [5]. The model uses the same dataset for training and

performance evaluation. However, the comparison focuses solely on model size and computational

complexity, reporting only limited metrics, such as the number of parameters and floating-point operations.

RDL-YOLO contains 2.43 million parameters and requires 6.9 GFLOPs, which are higher than those of

YOLOv12-nano. Furthermore, the lack of an inference speed evaluation limits the assessment of its

suitability for real-time deployment. Another study [6] introduces EAST-YOLO, which adopts the

YOLO11-nano architecture. The model contains 2.6 million parameters and requires 6.5 GFLOPs, which

are comparable to YOLOv12-nano. The study evaluates efficiency and detection performance using metrics

such as GFLOPs and mean average precision. However, the analysis is limited to the nano variant,

preventing a comprehensive comparison across different model scales, such as small and medium variants.

Subsequently, study [7] proposed a lightweight detection model named YOLO-Fast. However, the

comparison used only the small-scale variant, YOLOv8s, as the baseline. This limitation leaves a research

gap in evaluating nano-scale variants for efficiency and real-time deployment.

CNN architectures rely on large numbers of parameters and high computational complexity, which

result in high computational costs [8]. The work [9] proposes a two-stage underwater object detector based

on a region-based convolutional neural network (R-CNN) and a swin transformer to improve detection

performance. However, it increases computational complexity due to the use of self-attention, achieving

only 12.8 FPS, which is slower than YOLO architectures. Furthermore, the work in [10] introduces multiple

convolutional blocks to enhance the performance. It employs deformable large kernel attention (D-LKA),

which relies on large kernel operations, and incorporates separate and enhancement attention modules

(SEAM), both of which increase computational demands.

In addition, underwater imagery suffers from light scattering, color distortion, and low visibility,

which degrade image quality [11], [12], [13]. Therefore, robust models with sufficient convolutional depth

are required to extract meaningful features from complex data. Balancing lightweight design with strong

Comparative Study of Lightweight YOLOv12 Models for Real-Time Underwater Object Detection

129

feature representation is crucial to achieve both accuracy and real-time performance in underwater detection

tasks [14]. YOLOv12 is a CNN designed for real-time object detection [15]. It offers nano, small, and

medium model sizes. The nano model is the fastest and most efficient for real-time use. The small and

medium models are more accurate but need more computation. Deeper models produce better features but

slow down processing, which makes them less suitable for real-time tasks. This work addresses the limited

investigation of how different YOLO model scales influence detection accuracy, computational cost, and

inference speed [5]. Existing studies focus only on nano-scale models [6]. Other works rely on traditional

architectures [9], resulting in an incomplete understanding of scalability trade-offs. Furthermore, this study

introduces a new underwater object detection framework based on the YOLOv12 architecture, trained and

evaluated on the real-world underwater object detection dataset. The comparative analysis aims to identify

which variant achieves the optimal balance between detection performance, inference speed, and

computational efficiency across various devices. This study also compared the small and medium variants

of YOLOv12 to evaluate trade-offs in computational cost and detection performance. The study seeks to

determine the most suitable configuration for real-time applications in resource-constrained environments,

such as edge-based marine monitoring and mobile conservation systems.

II. METHODOLOGY

A. YOLOv12

The You Only Look Once (YOLO) series has become one of the most prominent frameworks in real-time

object detection due to its capability to achieve a strong trade-off between accuracy and computational

efficiency. As shown in Figure 1, the YOLOv12 network comprises several area attentions with C2f (A2C2f)

and cross stage partial with C3k (C3K2) modules to optimize feature extraction, enhance multi-scale feature

representation, and improve detection precision through a single-stage detection approach. Unlike

traditional two-stage methods that separate region proposal and classification steps, YOLOv12 integrates

these steps into a unified pipeline, resulting in faster, more streamlined inference. This design allows the

model to operate effectively in real-time applications and on devices with limited computational resources.

Additionally, YOLOv12 incorporates refined backbone and neck structures to strengthen feature fusion and

localization accuracy while preserving lightweight computation.

YOLOv12 includes five variants: nano, small, medium, large, and extra-large, each balancing

accuracy and efficiency for different applications. This study focuses on lightweight nano-, small-, and

medium-sized models optimized for real-time performance. The nano version with 2.6 million parameters

and 6.7 GFLOPs offers high speed on limited hardware, the small version with 9.3 million parameters and

21.7 GFLOPs provides higher precision, and the medium version with 20.2 million parameters and 68.1

GFLOPs achieves a balanced trade-off between accuracy and efficiency.

B. Backbone

The backbone in YOLOv12 serves as the main feature extractor, processing input images to learn

useful visual patterns. It uses the A2C2f and C3K2 modules to improve feature quality and efficiency. With

a pyramid structure, the backbone can capture features at multiple scales, enabling accurate detection of

both small and large objects with minimal computational cost.

1) A2C2f: The A2C2f module in YOLOv12 improves feature extraction by combining area attention

with efficient convolution. As shown in Figure 2, it starts with a 1×1 convolution to reduce the channel size

and then splits into two paths. One path acts as a shortcut, while the other applies either area attention or

the C3K block. Area Attention captures global context by modelling relationships between feature regions.

The C3K block is a modified C3 structure that utilizes flexible kernel sizes to better capture spatial

Comparative Study of Lightweight YOLOv12 Models for Real-Time Underwater Object Detection

130

Figure 1 The YOLOv12-nano architecture consists of a backbone (A2C2f, C3K2) for feature extraction, a neck for

feature fusion, and a detection head predicting objects on three layers (P3, P4, P5) [15]

information, as shown in Figure 3. The outputs are then processed by a feed-forward layer with two 1×1

convolutions to refine the features.

2) C3k2: To address underwater challenges such as blur and low visibility, effective feature extraction

is required. As shown in Figure 4, the C3K2 module acts as an efficient feature extractor. It is a lightweight

variant of the CSP bottleneck, similar to the C2f structure but using the C3K design. The module starts with

a 1×1 convolution to adjust the number of channels. Half of the channels are used for feature extraction,

while the remaining channels are preserved as identity connections to improve efficiency. C3K2 supports

two modes: C3K, with three convolutions and flexible kernel sizes, and C2f, with two 3×3 convolutions.

The outputs are then concatenated and processed by another 1×1 convolution to enhance channel interaction.

This compact structure provides strong feature representations for underwater detection.

C. Neck

The neck serves as the bridge between the backbone and detection head, merging multi-scale feature

maps to produce more discriminative representations. YOLOv12 employs a path aggregation network

(PAN) structure to enable both top-down and bottom-up feature fusion, enhancing context awareness across

layers [16]. Convolution and C3K2 modules are used to improve feature integration while maintaining

computational efficiency.

Comparative Study of Lightweight YOLOv12 Models for Real-Time Underwater Object Detection

131

D. Head

YOLOv12 uses an anchor-free detection head derived from YOLOv8, separating objectness,

classification, and bounding-box regression for enhanced accuracy and inference stability. The head

consists of two parallel branches with 3×3 and 1×1 convolutions, producing predictions at three scales

(80×80, 40×40, and 20×20) to detect small, medium, and large objects. The optimization process uses

Distribution Focal Loss (DFL) and Complete Intersection over Union (CIoU) loss for bounding-box

regression and Binary Cross-Entropy (BCE) for classification [17], [18], [19].

 𝑇𝑜𝑡𝑎𝑙𝑙𝑜𝑠𝑠 = 𝜆𝐶𝐼𝑜𝑈𝐿𝐶𝐼𝑜𝑈 + 𝜆𝐷𝐹𝐿𝐿𝐷𝐹𝐿 + 𝜆𝐶𝑙𝑠𝐿𝐶𝑙𝑠.  (1)

Figure 2 The A2C2f module uses area attention for global feature relations (True) and C3K block for adaptive spatial

extraction (False) [15].

Figure 3 The C3K module structure in YOLOv12, which works together with thebBottleneck module to extract

feature information efficiently [15].

Comparative Study of Lightweight YOLOv12 Models for Real-Time Underwater Object Detection

132

Figure 4 The C3K2 module uses C3K blocks for multi-scale feature aggregation (True) and Bottleneck blocks for

efficient local extraction (False) [15].

The total loss comprises of three components. The CIoU loss 𝐿𝐶𝐼𝑜𝑈 measures the discrepancy

between the predicted bounding box and the ground-truth box by considering overlap, distance, and aspect

ratio. The distribution loss 𝐿𝐷𝐹𝐿 applies Distribution Focal Loss to provide smooth supervision over

bounding box regression. In addition, the classification loss 𝐿𝐶𝑙𝑠 employs Binary Cross-Entropy (BCE) to

penalize incorrect class predictions.

E. Comparison Methods

In this work, efficiency is measured by the number of parameters and giga floating point operations

(GFLOPs) to represent computational complexity. Mean average precision (mAP) quantifies the accuracy

of localization and classification. Inference speed uses frames per second (fps). These metrics are widely

used in computer vision to analyze the trade-off between accuracy and efficiency. The number of

parameters depends on the kernel size, the number of input channels, and the number of output channels.

This relationship is expressed as follows:

 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = (𝐾ℎ × 𝐾𝑤 × 𝐶𝑖𝑛 + 1) × 𝐶𝑜𝑢𝑡.  (2)

The number of parameters is calculated based on the kernel size (representing the kernel height and

width), the number of input channels, and a bias term. The total parameter count is obtained by multiplying

these values by the number of output channels. In addition, GFLOPs is used to represent computational

cost by estimating the number of floating-point operations. This process is expressed as follows:

 𝐹𝐿𝑂𝑃𝑠 = ℎ × 𝑤 × 𝐶𝑜𝑢𝑡 × (𝑘 × 𝑘 × 𝐶𝑖𝑛).  (3)

Comparative Study of Lightweight YOLOv12 Models for Real-Time Underwater Object Detection

133

The computational cost is calculated by multiplying the total number of output feature map elements

(ℎ ×𝑤 × 𝐶𝑜𝑢𝑡) by the total number of kernel weights ((𝑘 × 𝑘 × 𝐶𝑖𝑛). This metric represents the number of

floating-point operations required to process the feature maps and is commonly used to estimate

computational complexity [20]. In addition, mAP is used to evaluate detection performance. This metric is

widely adopted in object detection with thresholds of 50% and 50%-95%, where higher values indicate

more precise predictions. This process is defined as follows:

 𝑚𝐴𝑃 =
1

𝑘
∑ 𝐴𝑃𝑖
𝑘
𝑖 .  (4)

Mean average precision evaluates detection performance by computing predictions using intersection

over union (IoU) thresholds of 50% and 50%-95%. The average precision for each class is first calculated,

and the final mAP value is obtained by averaging across all classes. This metric enables accurate evaluation

of positive sample predictions and overall detection quality.

F. Dataset

In this study, the real-world underwater object detection (RUOD) [21] dataset is used as the

benchmark for model evaluation, as shown in Figure 5. RUOD is a large-scale dataset designed to overcome

the limitations of previous underwater datasets, which have limited object types and scene diversity. It

contains 14,000 high-resolution images and 74,903 annotated objects across 10 aquatic categories,

including fish, diver, starfish, corals, turtle, echinus, holothurian, scallop, cuttlefish, and jellyfish. Each

image includes bounding box annotations and class labels. The dataset comprises 9,800 training images

and 4,200 test images, covering diverse underwater environments collected from public sources. RUOD

features a range of real-world challenges, including blur effects, color casts, light interference, and complex

marine conditions, making it a comprehensive and reliable benchmark for evaluating underwater object

detection performance.

G. Implementations Setup

As shown in Table I, training is performed on the Kaggle platform using an NVIDIA P100 GPU. The

model is trained for 150 epochs with a batch size of 16, and the input resolution is set to 640×640 pixels to

retain spatial detail. Stochastic gradient descent with a learning rate of 0.01 is used to ensure stable

parameter updates. This configuration provides sufficient computational capacity for effective learning

while helping prevent overfitting. For inference, Table I shows the model runs on Ubuntu 21 with an Intel

i5-12450HX CPU using PyTorch 2.0.1, with input images of 640 × 640 pixels as in training. This setup

enables a realistic evaluation of computational efficiency and inference speed on mid-range, GPU-free

devices.

III. RESULTS AND DISCUSSIONS

A. Evaluation on Datasets

To evaluate model performance, several key metrics are employed. The number of trainable

parameters determines the model's size and memory requirements. Giga floating-point operations (GFLOPs)

indicate the computational complexity of a single forward pass and reflect the overall computation cost.

Detection accuracy is reported using mAP50 and mAP50:95. In addition, frames per second (fps) represent

the inference speed and indicate how many images the model processes per second during inference. These

Comparative Study of Lightweight YOLOv12 Models for Real-Time Underwater Object Detection

134

Figure 5 Sample images from the RUOD dataset showing diverse underwater scenes with various marine species,

divers, and environmental conditions such as haze, color distortion, and light interference.

metrics provide a comprehensive analysis of both detection performance and computational efficiency. As

shown in Table I, YOLO12n and YOLO11n achieve the highest detection accuracy. YOLO12n obtains an

mAP50 of 0.833 and mAP50:95 of 0.590, while YOLO11n slightly improves performance with 0.834 and

0.591, respectively. Despite having similar parameter sizes (approximately 2.6M), YOLO11n demonstrates

marginally better accuracy. This indicates that the structural refinements in YOLO11n enhance feature

extraction without increasing computational complexity. In contrast, YOLO-Fast [7] has the smallest

parameter count (2.34M) and the lowest computational cost (6.5 GFLOPs), but its mAP50:95 score of 0.546

is significantly lower.

The result indicates that although YOLO-Fast is suitable for highly resource-constrained

environments, it compromises detection accuracy due to its limited representational capacity. Models such

as YOLOv10n [22], YOLOv8n, and YOLOv6n provide moderate performance, with mAP50 scores ranging

from 0.812 to 0.830 and parameter sizes between 2.7M and 4.2M, offering a balanced trade-off between

accuracy and efficiency. However, they still do not surpass the performance of newer architectures like

YOLO11n and YOLO12n. On the higher end, YOLO12s and YOLO12m achieve the strongest results, with

YOLO12s reaching an mAP50 of 0.860 and YOLO12m achieving the highest accuracy of 0.871, though

these gains come at substantially higher computational cost due to their larger parameter sizes.

Notably, YOLOv12n provides an advantageous balance between performance and efficiency. With

approximately 2.57M parameters and 6.5 GFLOPs, it achieves competitive detection accuracy while

maintaining a lightweight structure, making it well-suited for real-time applications and deployment on

devices with limited hardware resources. As illustrated in Figure 6, both YOLOv12-nano and YOLOv12-

small demonstrate effective detection performance across various underwater environments containing fish,

holothurians, echinus, starfish, and divers. However, noticeable differences emerge in detection precision

and robustness.

Based on Figure 6, the YOLOv12-nano model in (a) is able to detect the main objects but generates fewer

bounding boxes and occasionally misses small or partially occluded targets. This behaviour is expected, as

nano-scale models are optimized for lightweight computation rather than extensive feature representation.

In comparison, the YOLOv12-small model in (b) provides more complete detection coverage. Selecting

the most efficient YOLOv12 variant prioritizes inference speed and computational cost while maintaining

competitive detection accuracy. YOLOv12-nano uses 2.5 million parameters and 6.5 GFLOPs, achieving

an inference speed of 16.48 FPS. In comparison, YOLOv12-small increases the parameter count by 268%

to 9.2 million and the computational cost by 231% to 21.5 GFLOPs, resulting in a 61.89% reduction in

inference speed to 6.28 FPS. Although YOLOv12-small achieves a higher mAP, its higher computational

demand limits its suitability for low-CPU and edge devices. As shown in Figure 6, YOLOv12-nano

Comparative Study of Lightweight YOLOv12 Models for Real-Time Underwater Object Detection

135

provides competitive detection performance compared to the YOLOv12-small variant. Therefore, inference

speed and computational efficiency are the primary criteria in selecting the YOLOv12-nano variant.

B. Runtime Efficiency

To evaluate runtime efficiency, inference performance was analyzed across several YOLO variants

under a CPU-based setup. As shown in Table I, lower parameter counts and GFLOPs do not always

guarantee higher FPS, indicating that model speed is influenced not only by computational complexity but

also by algorithmic optimization and memory access efficiency. For example, YOLOv10n and YOLO11n

achieve the highest FPS values (18.37 and 18.59, respectively) despite having similar or slightly higher

parameter counts compared to lighter models like YOLOv12n and YOLO-FAST. This demonstrates that

architectural design and efficient memory utilization play a more critical role in determining real-time

performance than raw model size alone.

TABLE I

COMPARISON OF YOLO VARIANTS USING MODEL SIZE, COMPUTATIONAL COST, ACCURACY, AND SPEED

Models mAP50 mAP50:95 Parameters GFLOPs FPS

YOLO-FAST 0.807 0.546 2,340,366 6.5 15.32

YOLOv10n 0.825 0.581 2,710,940 8.4 18.37

YOLOv8n 0.83 0.583 3,012,798 8.2 15.96

YOLOv6n 0.812 0.568 4,239,134 11.9 13.84

YOLOv12s 0.86 0.628 9,257,006 21.5 6.28

YOLOv12m 0.871 0.647 20,145,198 67.8 2.36

YOLOv12n-Turbo 0.828 0.585 2,521,614 6.0 16.49

YOLO11n 0.834 0.591 2,591,790 6.5 18.59

YOLOv12n 0.833 0.59 2,569,998 6.5 16.48

Figure 6 Qualitative detection results on representative samples from the RUOD dataset. (a) Detection generated by

the YOLOv12-nano model. (b) Detection generated by the YOLOv12-small model.

Comparative Study of Lightweight YOLOv12 Models for Real-Time Underwater Object Detection

136

YOLOv12n and YOLO11n both maintain competitive speeds of 16.48 FPS and 18.59 FPS,

respectively, while keeping computational cost low at 6.5 GFLOPs, making them suitable for resource-

constrained deployment. In contrast, larger models such as YOLOv12s and YOLOv12m show significantly

reduced FPS with 6.28 and 2.36, respectively. These results highlight that YOLOv12n achieves a favorable

balance between inference speed and detection performance, making it well-suited for real-time

applications on mid-range hardware.

IV. CONCLUSIONS

This study evaluates lightweight YOLOv12 variants, aiming to achieve an optimal balance between

detection accuracy and computational efficiency for real-time object detection. YOLOv12-nano achieves

16.48 FPS on CPU inference while maintaining competitive detection accuracy with an mAP50:95 of 0.590,

utilizing only 2.57 million parameters and 6.5 GFLOPs. These results highlight its suitability for edge-

based or low-power systems, such as underwater monitoring platforms, where real-time processing and

energy efficiency are critical. Meanwhile, the small and medium variants offer higher accuracy but require

greater computational resources, making them more appropriate for GPU-based environments. This

efficiency result highlights the potential to further improve detection performance by integrating

enhancement modules.

ACKNOWLEDGEMENT

The authors sincerely thank the AIVISION research team for their valuable guidance and expertise

in computer vision and deep learning, as well as for providing the computational resources that supported

the experiments and refinement of this manuscript.

REFERENCES

[1] A. Apprill et al., “Toward a New Era of Coral Reef Monitoring,” Environ. Sci. Technol., vol. 57, no. 13, pp. 5117–

5124, Apr. 2023, doi: 10.1021/acs.est.2c05369.

[2] F. Wu, Z. Cai, S. Fan, R. Song, L. Wang, and W. Cai, “Fish Target Detection in Underwater Blurred Scenes Based on

Improved YOLOv5,” IEEE Access, vol. 11, pp. 122911–122925, 2023, doi: 10.1109/ACCESS.2023.3328940.

[3] T.-N. Pham, V.-H. Nguyen, K.-R. Kwon, J.-H. Kim, and J.-H. Huh, “Improved YOLOv5 Based Deep Learning

System for Jellyfish Detection,” IEEE Access, vol. 12, pp. 87838–87849, 2024, doi: 10.1109/ACCESS.2024.3405452.

[4] P. Pachaiyappan, G. Chidambaram, A. Jahid, and M. H. Alsharif, “Enhancing Underwater Object Detection and

Classification Using Advanced Imaging Techniques: A Novel Approach with Diffusion Models,” Sustainability, vol.

16, no. 17, 2024, doi: 10.3390/su16177488.

[5] D. Song and H. Huo, “Lightweight Underwater Target Detection Algorithm Based on YOLOv8n,” Electronics

(Basel)., vol. 14, no. 9, 2025, doi: 10.3390/electronics14091810.

[6] Y. Xu and X. Xiao, “Exploring the Depth From EAST: Efficient Aggregated State-Space Tanh-Tuned Model for

Underwater Object Detection,” IEEE Signal Process. Lett., vol. 32, pp. 3809–3813, 2025, doi:

10.1109/LSP.2025.3606841.

[7] Z. Song, X. Zhang, and P. Tan, “YOLO-Fast: a lightweight object detection model for edge devices,” Journal of

Supercomputing, vol. 81, no. 5, Apr. 2025, doi: 10.1007/s11227-025-07172-3.

[8] J. Lei, H. Wang, Z. Lei, J. Li, and S. Rong, “CNN–Transformer Hybrid Architecture for Underwater Sonar Image

Segmentation,” Remote Sens. (Basel)., vol. 17, no. 4, 2025, doi: 10.3390/rs17040707.

[9] J. Liu, S. Liu, S. Xu, and C. Zhou, “Two-Stage Underwater Object Detection Network Using Swin Transformer,”

IEEE Access, vol. 10, pp. 117235–117247, 2022, doi: 10.1109/ACCESS.2022.3219592.

[10] L. Guo, X. Liu, D. Ye, X. He, J. Xia, and W. Song, “Underwater object detection algorithm integrating image

enhancement and deformable convolution,” Ecol. Inform., vol. 89, p. 103185, 2025, doi:

https://doi.org/10.1016/j.ecoinf.2025.103185.

[11] X. Qin, C. Yu, B. Liu, and Z. Zhang, “YOLO8-FASG: A High-Accuracy Fish Identification Method for Underwater

Robotic System,” IEEE Access, vol. 12, pp. 73354–73362, 2024, doi: 10.1109/ACCESS.2024.3404867.

Comparative Study of Lightweight YOLOv12 Models for Real-Time Underwater Object Detection

137

[12] W. Yi, J. Yang, and L. Yan, “Research on Underwater Small Target Detection Technology Based on Single-Stage

USSTD-YOLOv8n,” IEEE Access, vol. 12, pp. 69633–69641, 2024, doi: 10.1109/ACCESS.2024.3400962.

[13] J. Huang, C. Fang, X. Zheng, and J. Liu, “YOLOv8-UC: An Improved YOLOv8-Based Underwater Object Detection

Algorithm,” IEEE Access, vol. 12, pp. 172186–172195, 2024, doi: 10.1109/ACCESS.2024.3496925.

[14] Z. Li, H. Xie, J. Feng, Z. Wang, and Z. Yuan, “YOLOv7-PE: A Precise and Efficient Enhancement of YOLOv7 for

Underwater Target Detection,” IEEE Access, vol. 12, pp. 133937–133951, 2024, doi:

10.1109/ACCESS.2024.3417322.

[15] Y. Tian, Q. Ye, and D. Doermann, “YOLOv12: Attention-Centric Real-Time Object Detectors,” Feb. 2025, [Online].

Available: http://arxiv.org/abs/2502.12524

[16] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path Aggregation Network for Instance Segmentation,” in 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2018, pp. 8759–8768. doi: 10.1109/CVPR.2018.00913.

[17] X. Li et al., “Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object

Detection,” Jun. 2020, [Online]. Available: http://arxiv.org/abs/2006.04388

[18] Z. Zheng et al., “Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance

Segmentation,” IEEE Trans. Cybern., vol. 52, no. 8, pp. 8574–8586, 2022, doi: 10.1109/TCYB.2021.3095305.

[19]. Usha Ruby Dr.A, “Binary cross entropy with deep learning technique for Image classification,” International Journal

of Advanced Trends in Computer Science and Engineering, vol. 9, no. 4, pp. 5393–5397, Aug. 2020, doi:

10.30534/ijatcse/2020/175942020.

[20] N. Shahadat and A. S. Maida, “Analyzing Parameter-Efficient Convolutional Neural Network Architectures for Visual

Classification,” Sensors, vol. 25, no. 24, Dec. 2025, doi: 10.3390/s25247663.

[21] C. Fu et al., “Rethinking general underwater object detection: Datasets, challenges, and solutions,” Neurocomputing,

vol. 517, pp. 243–256, 2023, doi: https://doi.org/10.1016/j.neucom.2022.10.039.

[22] A. Wang et al., “YOLOv10: Real-Time End-to-End Object Detection,” Oct. 2024, [Online]. Available:

http://arxiv.org/abs/2405.14458

Hebron Prasetya. Earned his Bachelor’s degree in Informatics from the Informatics Program at Sam Ratulangi

University, Manado, Indonesia, in 2025. He is currently enrolled in the Master’s program in Informatics at the same

university and is actively involved as a member of the Algorithmic Intelligence for Vision (AIVISION) research

group. His research focuses on computer vision and deep learning.

Revin Rehuel Balo. Began his undergraduate studies in 2020 and earned his Bachelor’s degree in Electrical

Engineering from the Department of Electrical Engineering, Sam Ratulangi University, Manado, Indonesia, in 2024.

He is currently pursuing his Master’s degree in the Master Program of Informatics, Postgraduate Program, Sam

Ratulangi University, Manado, Indonesia.

Tasya Tumbal. Obtained her Bachelor’s degree in Informatics from Sam Ratulangi University, Manado, Indonesia,

in 2024. She is currently pursuing her Master’s degree in the Master Program of Informatics, Postgraduate Program,

Sam Ratulangi University, Manado, Indonesia.

Alwin M. Sambul. Received his Bachelor’s degree in Engineering from Universitas Sam Ratulangi, Manado,

Indonesia, in 2003. He obtained his Master of Engineering degree from Kumamoto University, Japan, in 2011, and

completed his Doctor of Philosophy degree at Kumamoto University, Japan, in 2015. His research interests include

Computer Science, Biomedical Engineering, Biomedical Informatics, and Educational Technology

Muhamad Dwisnanto Putro. Obtained his Bachelor of Engineering degree in Electrical Engineering from Sam

Ratulangi University, Manado, Indonesia, in 2010. He completed his Master of Engineering (M.Eng.) degree at the

Department of Electrical Engineering, Gadjah Mada University, Yogyakarta, Indonesia, in 2012, and earned his Ph.D.

in Electrical, Electronic, and Computer Engineering from the University of Ulsan, South Korea, in 2022. He currently

holds the position of Associate Professor in the Master Program of Informatics at Sam Ratulangi University and leads

the Algorithmic Intelligence for Vision (AI-VISION) research group. His research activities focus on intelligent

vision and deep learning, particularly in the areas of robotic vision and perception.

